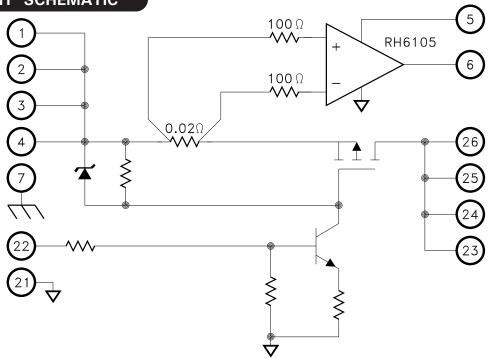

# HIGH SIDE DRIVER 600RH WITH CURRENT SENSE

## M.S.KENNEDY CORP.

- FEATURES:

   Manufactured using


  TECHNOLOGY RH 6105 Dice
- · Radiation Hardened to 100Krad(Si) (Method 1019 Condition A)
- 100V RAD HARD MOSFETs
- · Dual Configuration
- · Low Profile Surface Mount Flatpack
- 12V to 44V Input Voltage Range
- 5V to 36V VCC Supply Range
- 5A Max. Rating for Rad Hard Switches
- · Contact MSK for MIL-PRF-38534 Qualification Status



### **DESCRIPTION:**

The MSK6000RH is a radiation hardened dual 5A high side switch module with a current sensing output. Each switch is independently controlled with 5V logic and can switch up to 5A maximum current. Each switch has its own independent ground reference. The current monitor outputs provide a simple method for monitoring the current in each switch. The device is designed for space applications where quality, performance and low weight are a must. The MSK6000RH is packaged in a hermetic 26 pin flatpack.

### **EQUIVALENT SCHEMATIC**



ONE OF TWO CHANNELS SHOWN

### TYPICAL APPLICATIONS

- · High Side Switch Drivers
- · High Level Switching
- Space Applications
- · Circuit Breaker

### PIN-OUT INFORMATION

| 1 | VINA  | 18 | VOUTB        | 26       | VOUTA |
|---|-------|----|--------------|----------|-------|
| 2 | VINA  | 17 | VOUTB        | 25<br>25 | VOUTA |
| 3 | VINA  | 16 | VOUTB        | 24       | VOUTA |
| 4 | VINA  | 15 | CTLB         | 23       | VOUTA |
| 5 | VCCA  | 14 | GNDB         | 22       | CTLA  |
| 6 | IMONA | 13 | <b>IMONB</b> | 21       | GNDA  |
| 7 | CASE  | 12 | VCCB         | 20       | CASE  |
| 8 | VINB  | 11 | VINB         | 19       | VOUTB |
| 9 | VINB  | 10 | VINB         |          |       |

and the Linear Technology logo are registered trademarks and RH6105 is a copyright of Linear Technology Corporation

### **ABSOLUTE MAXIMUM RATINGS**

| VIN  | Input Voltage              | Ts | Storage Temperature Range55°C to +150°C |
|------|----------------------------|----|-----------------------------------------|
| Vcc  | Positive Supply Voltage    | TL | Lead Temperature                        |
| TJ   | Junction Temperature       |    | (Soldering, 10 Seconds)                 |
| VCTL | Control Input Voltage 6.0V | Tc | Case Operating Temperature              |
| Iout | Ouput Current              |    | MSK6000RH40°C to +85°C                  |
| Vout | Output Voltage             |    | MSK6000(K/H)RH                          |
|      |                            |    | ESD Rating                              |

### **ELECTRICAL SPECIFICATIONS**

| Parameter                | Test Conditions 1                                           |                  | Group A<br>Subgroup | Min.  | Тур. | Max.  | Units |
|--------------------------|-------------------------------------------------------------|------------------|---------------------|-------|------|-------|-------|
| VCC Supply Current       | Vctl = N/C                                                  |                  | 1,2,3               | -     | 175  | 450   | μΑ    |
| MIN O THE O              | V <sub>CTL</sub> = N/C<br>RL = N/C                          |                  | 1,2,3               | -     | 30   | 125   | μΑ    |
| /IN Supply Current       | V <sub>CTL</sub> = 4V<br>RL = N/C                           |                  | 1,2,3               | -     | 1.5  | 5.0   | mA    |
| Output Voltage (Off)     | $RL = 10K \Omega$                                           |                  | 1,2,3               | -     | 0.01 | 1.0   | V     |
| Switch On Besietanes (6) | Iouт = 2.5A                                                 |                  | 1                   | -     | 0.26 | 0.40  | Ω     |
| Switch On Resistance (6) | Vctl = 4V                                                   |                  | 2,3                 | -     | -    | 0.80  | Ω     |
| Output Dalay Times       | loυτ = 2.5A<br>Measured @ 50%<br>Points Of Input and Output | TON              | 4,5,6               | -     | 4.2  | 10    | uS    |
| Output Delay Times       |                                                             | TOFF             | 4,5,6               | -     | 21   | 40    | uS    |
| CTL Threshold            | loυτ≤100uA (OFF)<br>loυτ≤2.5A (ON)                          |                  | 1,2,3               | 0.8   | 2.4  | 4.0   | V     |
| CTL Input Current        | VcTL = 5V                                                   |                  | 1                   | -     | -    | 850   | uA    |
| Output Current 2         | VcTL = 4V                                                   |                  | 1                   | 5.0   | -    | -     | Α     |
| IN/ON Cain               | <b>І</b> оυт = 2.5 А                                        |                  | 1                   | 0.190 | 0.20 | 0.210 | mA/A  |
| IMON Gain                |                                                             | Post Irradiation | 1                   | 0.185 | 0.20 | 0.215 | mA/A  |
| Thermal Resistance       | Junction to Case, Each MOSFET                               | - '              | -                   | -     | 5.0  | 5.5   | °C/W  |

### **NOTES:**

- (1) Unless otherwise specified the following test conditions shall apply: VCC = VIN = +28V, IMON Resistor =  $5K\Omega$  to ground. Parameter applies to each channel seperately.
- Parameter, if not tested shall be guaranteed to the specified limits in table 1.
- 2 Parameter, if r3 Subgroup 1,4 TA = TC = +25 °C Subgroup 2,5 TA = TC = +125 °C TA = TC = -55 ° C Subgroup 3,6
- Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle.
- 4 Continuous operation at or above
  5 Pre and Post irradiation limits at
  6 Includes internal sense resistor. Pre and Post irradiation limits at 25°C, up to 100 Krad(Si) TID, are identical unless otherwise specified.

### **APPLICATION NOTES**

### PIN FUNCTIONS

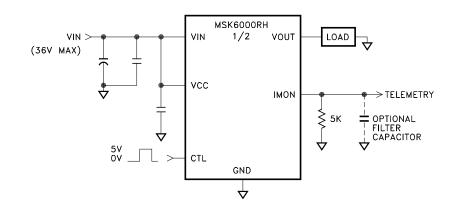
**VIN** - The VIN pins are connected to sources of MOSFETs. They provide the voltage supply that is switched to the output pins. High di/dt can be present at these pins during switch on and off transitions. Decoupling capacitors are recommended to minimize voltage spikes.

**VCC** - The VCC pins power the current sense amplifier. The VCC pins should be connected to low impedance positive supply source.

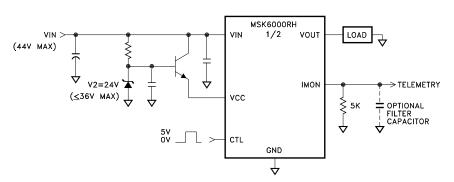
**VOUT** - The VOUT pins connect to drains of internal MOSFETs and are the device power outputs.

CTL - The CTL pins connect to the high side switch enabling circuits. When a logic high voltage is present, the high side switches turn on passing power from VIN to VOUT. The CTL pin threshold has no hysterisis. It operates in a linear region between 2.0V typical (OFF) and 2.7V typical (ON) at 25°C, 1.3V typical (OFF) and 2.2V typical (ON) at 125°C, and 2.6V typical (OFF) and 3.0V typical (ON) at -55°C. Input signals with fast transitions are recommended to prevent excessive power dissipation.

**IMON** - The IMON pins connect to the output of the internal RH6105 current sense amplifiers. Voltage drop across internal current sense resistor is amplified and a scaled current is sourced from the IMON pin. The ratio of IMON current to source current is 0.20mA/A. When terminated with a  $5 \text{K}\Omega$  resistor the output voltage is 1 V/A.


**GND** - The GND pins are the reference for each driver circuit. Each channel has it's own ground. The control input signals and current sense outputs are referenced to the respective grounds.

**CASE** - The CASE connection pins provide an electrical connection to the MSK6000RH package. They are electrically isolated from the internal circuitry.


# TOTAL DOSE RADIATION TEST PERFORMANCE

Radiation performance curves for TID testing have been generated for all radiation testing performed by MS Kennedy. These curves show performance trends throughout the TID test process and are located in the MSK6000RH radiation test report. The complete radiation test report is available in the RAD HARD PRODUCTS section on the MSK website.

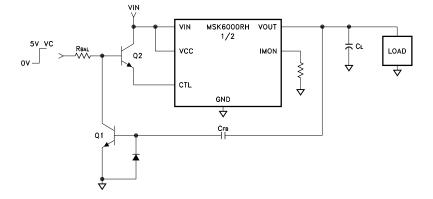
### TYPICAL APPLICATION CIRCUIT



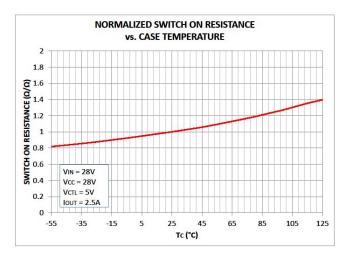
#### HIGH VIN APPLICATION CIRCUIT

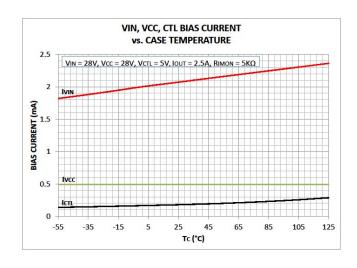


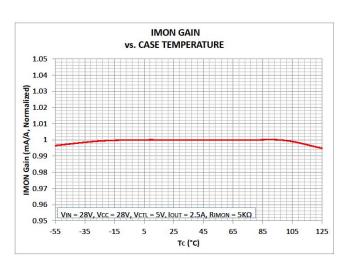
NOTE: VCC CAN BE POWERED FROM AN INDEPENDENT POWER SUPPLY

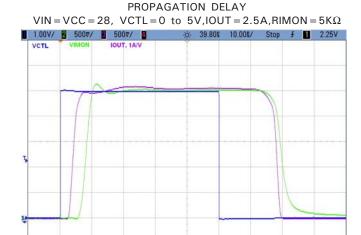

### **APPLICATION NOTES**

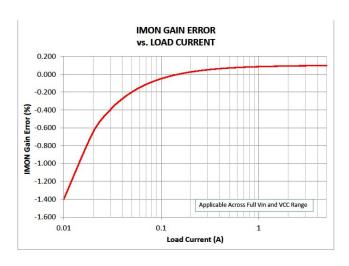
### **VOUT RISE TIME CONTROL**

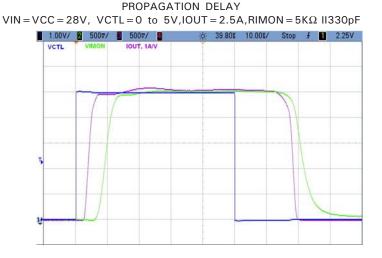

The output rise time of the MSK6000RH and the associated surge currents can be controlled over a wide range using a few external components as shown in the smplified schematic below. Power dissipation in the MSK6000RH can increase during turn on or bus voltage transients and should be considered. The circuit below performs the rise time control function by controlling the voltage drop  $V_{\text{R}}$  across  $R_{\text{BAL}}$ . Assuming a constant current to linearly change the output capacitance, the MSK6000RH rise time is approximated by the following equation:


$$\frac{dV_{OUT}}{dt} = \frac{V_{RBAL}}{\text{Bo1 x RBAL x CFB}} \text{ Where } V_{RBAL} = V_{C} - V_{THRESHOLD}$$

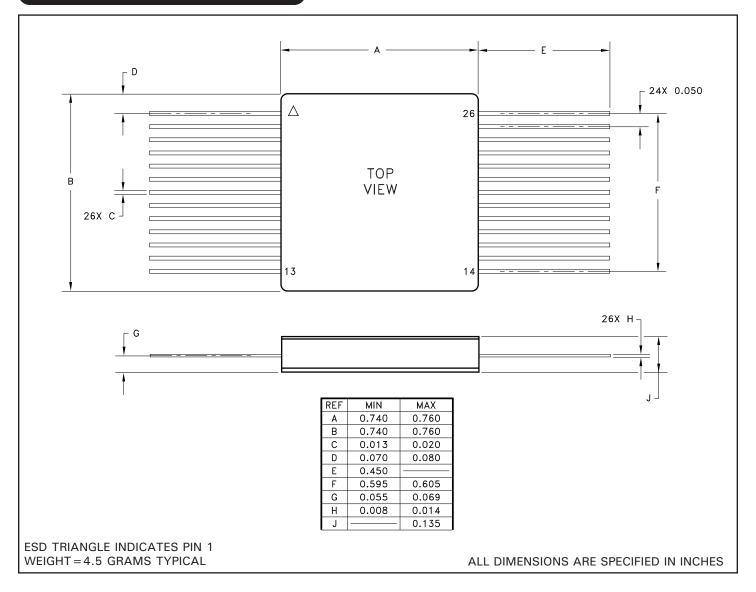

### **VOUT RISE TIME CONTROL CIRCUIT**





### **TYPICAL PERFORMANCE CURVES**












### **MECHANICAL SPECIFICATIONS**



### ORDERING INFORMATION

| Part<br>Number | Screening Level       |  |  |
|----------------|-----------------------|--|--|
| MSK6000RH      | Industrial            |  |  |
| MSK6000HRH     | MIL-PRF-38534 Class H |  |  |
| MSK6000KRH     | MIL-PRF-38534 Class K |  |  |

### **REVISION HISTORY**

| REV | STATUS   | DATE  | DESCRIPTION                                                              |  |
|-----|----------|-------|--------------------------------------------------------------------------|--|
| D   | Released | 05/14 | d high dose rate test bullet, add post rad specs and clarify dimensions. |  |
| Е   | 21116    | 06/14 | dd ESD rating.                                                           |  |
| F   | 21365    | 10/14 | dd slew rate control app circuit, correct sheet 2 note 5.                |  |

M.S. Kennedy Corp. Phone (315) 701-6751 FAX (315) 701-6752 www.mskennedy.com

7