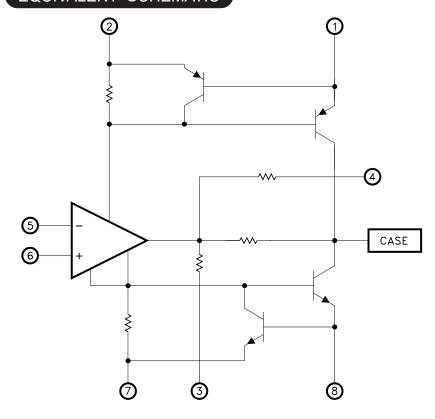

TTM Technologies

HIGH POWER OP-AMP

0021 SERIES

FEATURES:


- Available as SMD #5962-8508801
- High Output Current 2 Amps Peak
- · Low Power Consumption-Class C Design
- · Programmable Current Limit
- · High Slew Rate
- · Continuous Output Short Circuit Duration
- Replacement for LH0021
- Functionally Equivalent Rad Hard Device MSK106RH

DESCRIPTION:

The MSK0021, 0021FP and 0021FPG are general purpose Class C power operational amplifiers. These amplifiers offer large output currents, making them an excellent low cost choice for motor drive circuits. The amplifier and load can be protected from fault conditions through the use of internal current limit circuitry that can be user programmed with two external resistors. These devices are also compensated with a single external capacitor. The MSK0021 is available in a hermetically sealed 8 pin TO-3 package. The MSK0021FP is packaged in a 20 pin hermetic metal flatpack and the 0021FPG is lead formed by MSK.

EQUIVALENT SCHEMATIC

PIN-OUT INFORMATION

MSK0021

- 1 ISC+
- 2 +VCC
- 3 GND
- 4 Compensation
- 5 -Input
- 6 +Input
- 7 -VCC
- B -ISC

CASE-OUTPUT

MSK0021FP/MSK0021FPG

1	ISC-	20	-VCC
2	ISC-	19	NC
3	ISC-	18	+VIN
4	VOUT	17	NC
5	VOUT	16	-VIN
6	VOUT	15	NC
7	VOUT	14	Compensation
8	ISC+	13	NC
9	ISC+	12	GND

CASE IS ALSO VOUT

10 ISC+

TYPICAL APPLICATIONS

- · Servo Amplifer
- Motor Driver
- Audio Amplifier
- · Programmable Power Supply

11 +VCC

ABSOLUTE MAXIMUM RATINGS

(8)

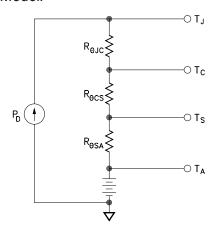
±VCC	Supply Voltage±18V	Tst	Storage Temperature Range65°C to +150°C
lout	Peak Output Current	TLD	Lead Temperature Range
VIN	Differential Input Voltage ±30A		(10 Seconds)
VIN	Common Mode Input Voltage ±15V	PD	Power Dissipation (TO-3) 6W
RTH	Thermal Resistance-Junction to Case	TJ	Junction Temperature
	MSK00212.0° C/W	Tc	Case Operating Temperature Range
	MSK0021FP/FPG		Military Versions (H/B)55°C to +125°C
			Industrial Versions40°C to +85°C

ELECTRICAL SPECIFICATIONS

Parameter	Test Conditions	Group A	Military 5			Industrial 4			Units
raiailletei	rest conditions	Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Ullits
STATIC									
Supply Voltage Range 2		-	±12	±15	±18	±12	±15	±18	V
Quiescent Current	VIN = 0V	1, 2, 3	-	±1.0	±3.5	-	±1.0	±4.0	mA
Power Consumption (2)	VIN = 0V	1, 2, 3	-	75	105	-	90	120	mW
INPUT									
Input Offset Voltage ——	VIN = 0V	1	-	±0.5	±3.0	-	±0.5	±5.0	mV
Input Offset Voltage	5V ≤ VCC ≤ 18V	2, 3	-	±2.0	±5.0	-	-	-	μV/°C
Invest Dine Comment	V _{CM} = 0V, 5V ≤ VCC ≤ 18V	1	-	±100	±300	-	±150	±500	nA
Input Bias Current ———	Either Input	2, 3	-	±0.4	±1.0	-	-	-	μΑ
land Offer to Comment	V _{CM} = 0V	1	-	±2.0	±100	-	±2.0	±300	nA
Input Offset Current ———	5V ≤ VCC ≤ 18V	2, 3	-	-	±300	-	-	-	nA
Input Capacitance (3)	F = DC	-	-	3	-	-	3	-	pF
Input Resistance (2)	F = DC	-	0.3	1.0	-	0.3	1.0	-	МΩ
0 11 5 7 5 7	5 4011 14 4014	4	70	90	-	70	90	-	dB
Common Mode Rejection Ratio	$F = 10Hz$ $V_{CM} = \pm 10V$		70	90	-	-	-	-	dB
Danier Committe Data attan Data)/OO/5\/	1	80	95	-	80	95	-	dB
Power Supply Rejection Ratio	$VCC = \pm 5V \text{ to } \pm 15V$	2, 3	80	-	-	-	-	-	dB
Input Noise Voltage (3)	F = 10Hz to 10KHz	-	-	5	-	-	5	-	μVrms
OUTPUT									
	D 4000 E 400U	4	±13.5	±14	-	±13.0	±14	-	V
Output Voltage Swing	$R_L = 100\Omega$ $F = 100Hz$		±13.5	±14	-	-	-	-	V
	$R_L = 10\Omega$ F = 100Hz		±11	±12	-	±10.5	±12	-	V
0.1.101.10: 1101	Rsc = 0.5Ω VOUT = MAX	4	0.8	1.2	1.6	0.7	1.2	1.7	Α
Output Short Circuit Current ———	Rsc = 5Ω VOUT = GND	4	50	150	250	50	150	250	mA
Settling Time (3)	0.1% 2V step	-	-	4	-	-	4	-	μS
TRANSFER CHARACTERISTICS									
Slew Rate	VOUT = $\pm 10V$ RL = 100Ω	4	1.5	3.0	-	1.2	3.0	-	V/µS
0	F = 40U= - D; = 4000	4	100	175	-	100	175	-	V/mV
Open Loop Voltage Gain	$F = 10Hz$ $R_L = 100\Omega$		25	63	-	-	-	-	V/mV
Transition Times	Rise and Fall	4	-	0.3	1.0	-	0.3	1.2	μS
Overshoot	Small Signal	4	-	5	20	-	5	20	%

NOTES:

- 1 Unless otherwise specified, \pm VCC = \pm 15V, CC = 3000pF.
- (2) Guaranteed by design but not tested.
- (3) Typical parameters are representative of actual device performance but are for reference only. .
- (4) Industrial devices shall be tested to subgroups 1 and 4 unless otherwise specified...
- (5) Military grade devices (B/H suffix) shall be 100% tested to subgroups 1, 2, 3 and 4.


- (6) Reference DSCC SMD 5962-8508801 for electrical specifications for devices purchased as such.
- 7 Subgroup 5 and 6 testing available upon request.
- 8 Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle.

APPLICATION NOTES

HEAT SINKING

To select the correct heat sink for your application, refer to the thermal model and governing equation below.

Thermal Model:

Governing Equation:

TJ = PD X (R0JC + R0CS + R0SA) + TA

Where

TJ = Junction Temperature PD = Total Power Dissipation

Rejc Junction to Case Thermal Resistance = Case to Heat Sink Thermal Resistance Recs = Heat Sink to Ambient Thermal Resistance Resa

= Case Temperature Tc = Ambient Temperature TΑ = Sink Temperature Ts

Example: (TO-3 PACKAGE)

In our example the amplifier application requires the output to drive a 10 volt peak sine wave across a 10 ohm load for 1 amp of output current. For a worst case analysis we will treat the 1 amp peak output current as a D.C. output current. The power supplies are ±15 VDC.

Find Power Dissipation

PD=[(quiescent current) X (+VCC- (-VCC))] + [(Vs - Vo) X [TUOI

 $=(3.5 \text{ mA}) \times (30 \text{V}) + (5 \text{V}) \times (1 \text{A})$ =0.1W + 5W

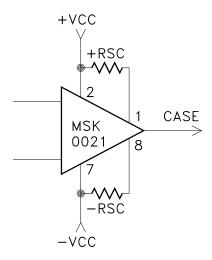
=5.1W

- 2.) For conservative design, set T_J = +125°C.
- 3.) For this example, worst case $TA = +25^{\circ}C$.
- 4.) ReJC = 2.0° C/W typically for the TO-3 package.

5.) Rearrange governing equation to solve for R₀SA:

 $R\theta SA = (TJ - TA) / PD - (R\theta JC) - (R\theta CS)$

 $= (125^{\circ}\text{C} - 25^{\circ}\text{C}) / 5.1\text{W} - (2.0^{\circ}\text{C/W}) - (0.15^{\circ}\text{C/W})$ $= 17.5^{\circ}C/W$


The heat sink in this example must have a thermal resistance of no more than 17.5°C/W to maintain a junction temperature of less than +125°C.

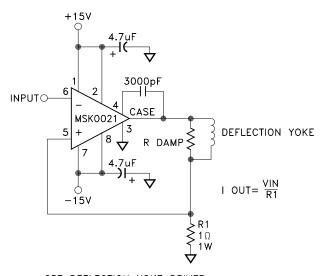
CURRENT LIMIT

The MSK0021 has an on-board current limit scheme designed to limit the output drivers anytime output current exceeds a predetermined limit. The following formula may be used to determine the value of the current limit resistance necessary to establish the desired current limit.

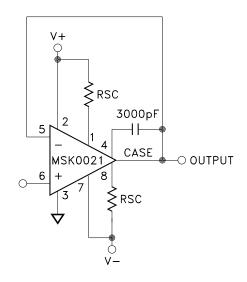
$$Rsc = \frac{0.7}{Isc}$$

Current Limit Connection

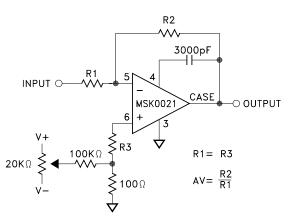
See "Application Circuits" in this data sheet for additional information on current limit connections.

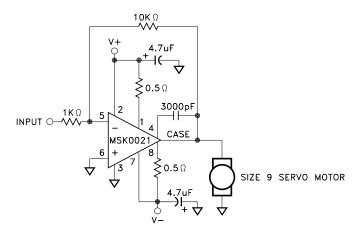

POWER SUPPLY BYPASSING

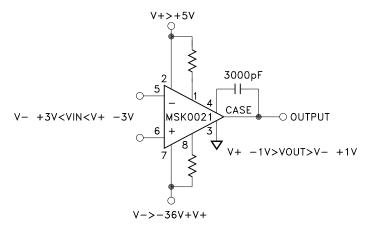
Both the negative and the positive power supplies must be effectively decoupled with a high and low frequency bypass circuit to avoid power supply induced oscillation. An effective decoupling scheme consists of a 0.1 microfarad ceramic capacitor in parallel with a 4.7 microfarad tantalum capacitor from each power supply pin to ground. It is also a good practice with high power op-amps, such as the MSK0021, to place a 30-50 microfarad capacitor with a low effective series resistance, in parallel with the other two power supply decoupling capacitors. This capacitor will eliminate any peak output voltage clipping which may occur due to poor power supply load regulation. All power supply decoupling capacitors should be placed as close to the package power supply pins as possible.


SAFE OPERATING AREA

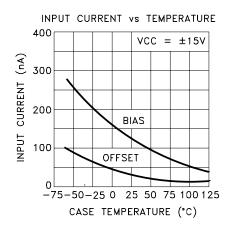
The safe operating area curve is a graphical representation of the power handling capability of the amplifier under various conditions. The wire bond current carrying capability, transistor iunction temperature and secondary breakdown limitations are all incorporated into the safe operating area curves. All applications should be checked against the S.O.A. curves to ensure high M.T.B.F.

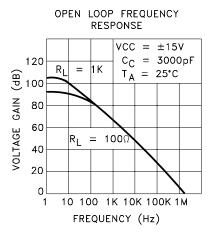

APPLICATION CIRCUITS

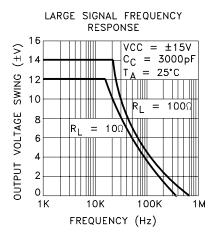

CRT DEFLECTION YOKE DRIVER

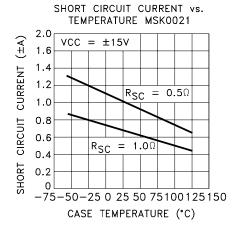

UNITY GAIN CIRCUIT WITH SHORT CIRCUIT LIMITING

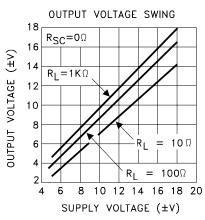
OFFSET VOLTAGE NULL CIRCUIT

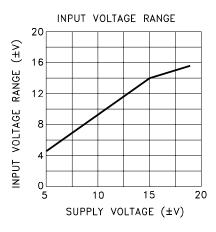


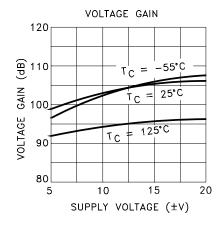

DC SERVO AMPLIFIER

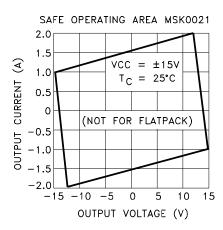


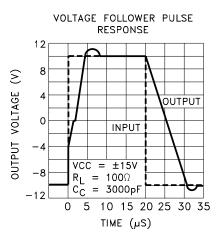

NON SYMMETRICAL SUPPLIES

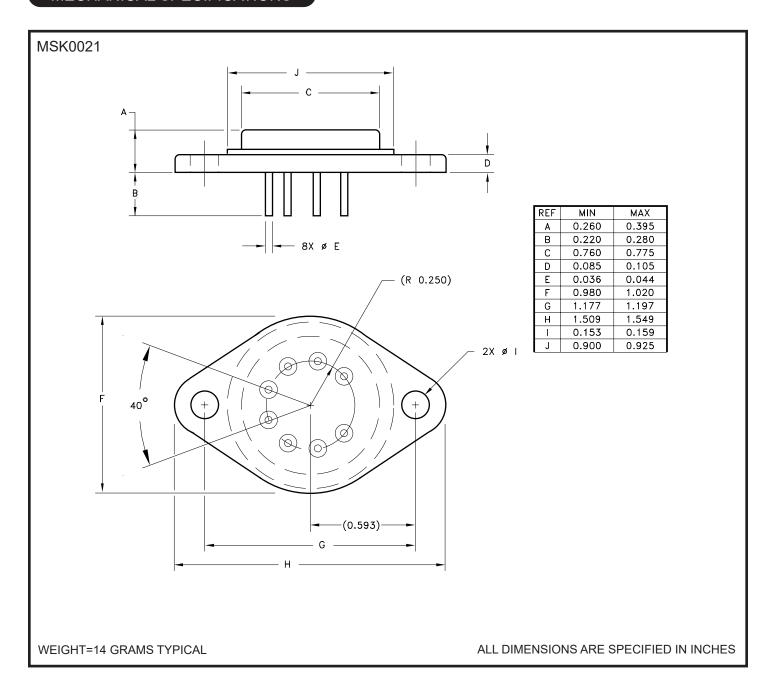

TYPICAL PERFORMANCE CURVES

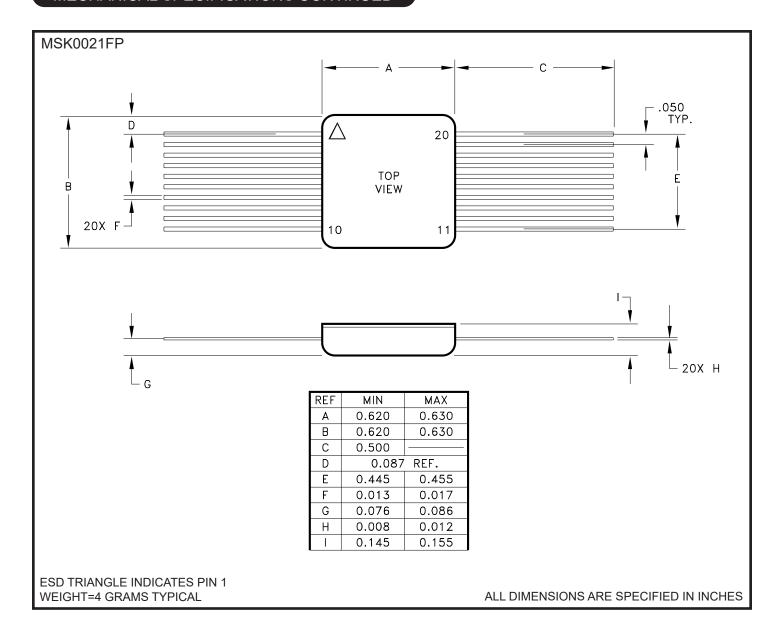






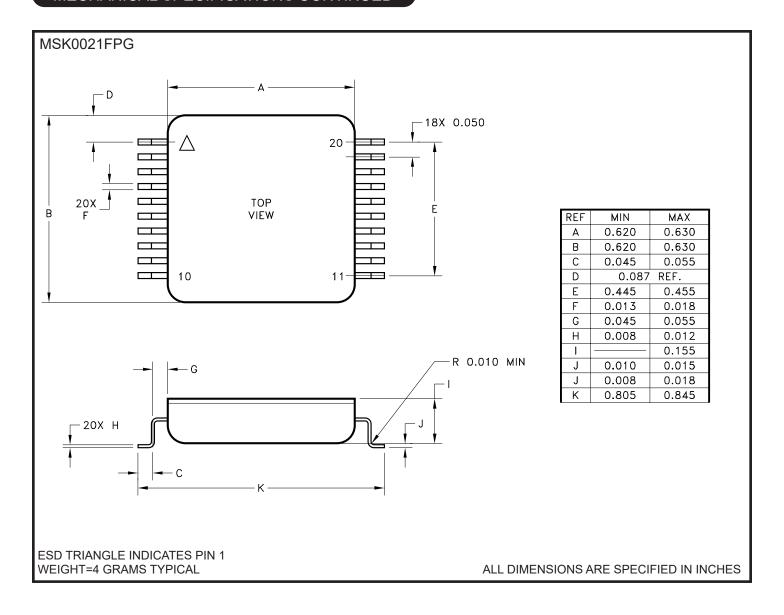





MECHANICAL SPECIFICATIONS

ORDERING INFORMATION

Part Number	Screening Level
MSK 0021	Industrial
MSK 0021B	MIL-PRF-38534 Class H
5962-8508801X	DSCC-SMD


MECHANICAL SPECIFICATIONS CONTINUED

ORDERING INFORMATION

Part Number	Screening Level
MSK 0021FP	Industrial
MSK 0021FPH	MIL-PRF-38534 Class H
TBD	DSCC-SMD

MECHANICAL SPECIFICATIONS CONTINUED

ORDERING INFORMATION

Part Number	Screening Level
MSK 0021FPG	Industrial
MSK 0021FPG H	MIL-PRF-38534 Class H
TBD	DSCC-SMD

REVISION HISTORY

REV	STATUS	DATE	DESCRIPTION
Е	Released	09/15	Change ±VCC in IB, IOS, VOS test paragraphs change AV units from dB to V/mV.
F	Released	09/21	Remove MIL-PRF-38535

TTM Technologies www.ttmtech.com