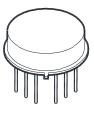
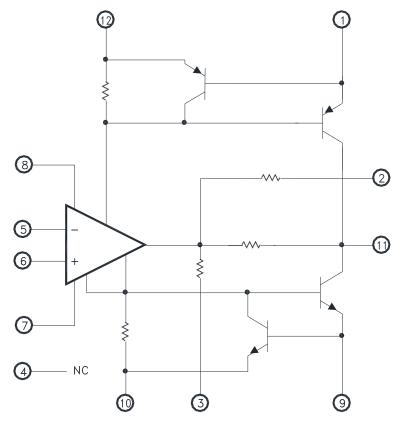

TTM Technologies.

MEDIUM POWER OP-AMP


0041 SERIES

FEATURES:

- Available as SMD #5962-8508701
- Output Current 0.5 Amps Peak
- · Low Power Consumption-Class C Design
- · Programmable Current Limit
- High Slew Rate
- Continuous Output Short Circuit Duration
- Replacement for LH0041
- Available in a surface mount package
- Functionally Equivalent Rad Hard Device MSK 0041RH



MSK0041

DESCRIPTION:

The MSK 0041 and 0041FP are general purpose Class C power operational amplifiers. These amplifiers offer high output currents, making them an excellent low cost choice for motor drive circuits. The amplifier and load can be protected from fault conditions through the use of internal current limit circuitry that can be user programmed with two external resistors. These devices are also compensated with a single external capacitor. The MSK 0041 is available in a hermetically sealed 12 pin TO-8 package. The MSK 0041FP is packaged in a 12 pin hermetic metal flatpack.

EQUIVALENT SCHEMATIC

(PIN NUMBERS ARE FOR TO-8)

TYPICAL APPLICATIONS

- Servo Amplifier
- · Motor Driver
- Audio Amplifier
- Programmable Power Supply

PIN-OUT INFORMATION

MSI	K0041	MSK0041FP				
1.	ISC+	1.	GND			
2.	Compensation	2.	Balance			
3.	GND	3.	-Input			
4.	NC	4.	+Input			
5.	-Input	5.	Balance			
6.	+Input	6.	NC			
7.	Balance	7.	-VCC			
8.	Balance	8.	ISC-			
9.	ISC-	9.	Output			
10.	-VCC	10.	ISC+			
11.	Output	11.	+VCC			
12.	+VCC	12.	Compensation			

CASE = ISOLATED

ABSOLUTE MAXIMUM RATINGS

$\pm V_{CC}$	Supply Voltage ±18V	T_{ST}	Storage Temperature Range65°C to 150°C
I_{OUT}	Peak Output Current0.5A	T_LD	Lead Temperature Range
V_{IN}	Differential Input Voltage ±30A		(10 Seconds)
V_{IN}	Common Mode Input Voltage ±15V	ΤJ	Junction Temperature
R_{TH}	Thermal Resistance-Junction to Case @ 25°C		
	MSK004190°C/W		Military Versions (H/B)55°C to +125°C
	MSK0041FP90°C/W		Industrial Versions40°C to +85°C

ELECTRICAL SPECIFICATIONS

All ratings: $Tc = +25^{\circ}C$ unless otherwise specified.

Parameter	Test Conditions	Group A		Military 5		Industrial 4			Units
Parameter	rest Conditions	Subgroup	Min.	Тур.	p. Max. Min Typ. Max.	Max.	Units		
STATIC			<u> </u>						
Supply Voltage Range (2)		-	±5	±15	±18	±5	±15	±18	V
Quiescent Current	$V_{IN} = 0V$	1, 2, 3	-	±1.0	±3.5	-	±1.0	±4.0	mA
Power Consumption (2)	$V_{IN} = 0V$	1, 2, 3	-	75	105	-	90	120	mW
INPUT									
Innut Offeet Veltage	\/ 0\/		-	±0.5	±3.0	-	±0.5	±6.0	mV
Input Offset Voltage	$V_{IN} = 0V$	2, 3	-	±2.0	±5.0	-	-	-	mV
Innut Bigg Current	V _{CM} = 0V	1	-	±100	±300	-	±150	±500	nA
Input Bias Current	Either Input	2, 3	-	±0.4	±1.0	-	-	-	μA
Innut Officet Current	$V_{CM} = 0V$	1	-	±2.0	±100	-	±2.0	±200	nA
Input Offset Current	VCM = UV	2, 3	-	-	±300	-	-	-	nA
Input Capacitance (3)	F = DC	-	-	3	-	-	3	-	pF
Input Resistance (2)	F = DC	-	0.3	1.0	-	0.3	1.0	-	MΩ
Common Mode Rejection Ratio	F = 10Hz V _{CM} = ±10V	4	70	90	-	70	90	-	dB
Common wode Rejection Ratio		5, 6	70	90	-	-	-	-	dB
Power Supply Rejection Ratio	VCC = ±5V to ±15V	1	80	95	-	80	95	-	dB
Fower Supply Rejection Ratio	VCC = ±3V tO ±13V	2, 3	80	9	-	-	-	-	dB
Input Noise Voltage (3)	F = 10Hz to $10KHz$	-	1	5	-	-	5	-	μV _{RMS}
OUTPUT									
Output Voltage Swing	$R_1 = 100\Omega$ F = 100Hz	4	±13	±14	-	±13	±14	-	V
Output Voltage Owing	KL = 10022 F = 100112	5, 6	±13	±14	-	-	-	-	V
Output Short Circuit Current	$R_{SC} = 3.3\Omega$ $V_{OUT} = MAX$	4	-300	-	300	-300	-	300	mA
Settling Time	0.1% 2V step	-	-	4	-	-	4	-	μS
TRANSFER CHARACTERISTICS									
Slew Rate	$VOUT = \pm 10V$ $R_L = 100\Omega$	4	1.5	3.0	-	1.0	3.0	-	V/µS
Open Loop Voltage Gain	$F = 10Hz$ $R_L = 1K\Omega$	4	100	105	-	100	105	-	dB
pon Loop Vollage Gain	1 - 10112 11 - 11/22	5, 6	88	96	-	-	-	-	dB
Transition Times	V _{OUT} = 1V Rise and Fall	4	-	0.3	1.0	-	0.3	1.5	μS
Overshoot	Small Signal	4	-	5	20	-	5	30	%
Open Loop Voltage Gain	$F = 10Hz$ $R_L = 100\Omega$	4, 5, 6	88	-	-	88	-	-	dB

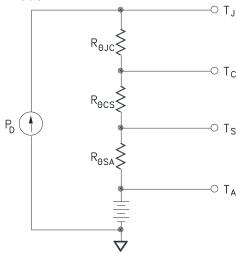
NOTES:

- (1) Unless otherwise specified, \pm VCC = \pm 15V, CC = 3000pF.
- 2 Guaranteed by design but not tested.
- 3 Typical parameters are representative of actual device performance but are for reference only.
- 4 Industrial grade devices shall be tested to subgroups 1 and 4 unless otherwise specified.
- (5) Military grade devices (B/H suffix) shall be 100% tested to subgroups 1, 2, 3 and 4.

Subgroup 1, 4 TA = TC =
$$+25$$
°C 2, 5 TA = TC = $+125$ °C

3, 6 $TA = TC = -55^{\circ}C$

- 6 Reference DLA SMD 5962-8508701 for electrical specifications for devices purchased as such.
- (7) Subgroup 5 and 6 testing available upon request.
- (8) Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle.


2

APPLICATION NOTES

HEAT SINKING

To select the correct heat sink for your application, refer to the thermal model and governing equation below.

Thermal Model:

Governing Equation:

 $TJ = PD x (R\theta JC + R\theta CS + R\theta SA) + TA$

Where

TJ = Junction Temperature
PD = Total Power Dissipation

ReJC = Junction to Case Thermal Resistance ReCS = Case to Heat Sink Thermal Resistance ReSA = Heat Sink to Ambient Thermal Resistance

TC = Case Temperature
TA = Ambient Temperature
TS = Sink Temperature

Example: (TO-8 PACKAGE)

In our example the amplifier application requires the output to drive a 10 volt peak sine wave across a 100 ohm load for 0.1 amp of output current. For a worst case analysis we will treat the 0.1 amp peak output current as a D.C. output current. The power supplies are ± 15 VDC.

1.) Find Power Dissipation

PD = [(quiescent current) X (+VCC - (VCC))] + [(VS - VO) X IOUT]

 $= (3.5 \text{ mA}) \times (30 \text{V}) + (5 \text{V}) \times (0.1 \text{A})$

= 0.1W + 0.5W

= 0.6W

2.) For conservative design, set $T_J = +150$ °C.

3.) For this example, worst case TA = +25°C.

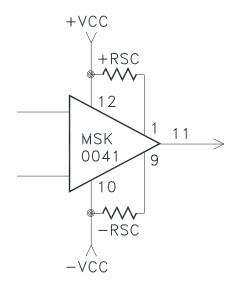
4.) $R\theta JC = 85^{\circ}C/W$

5.) Rearrange governing equation to solve for Resa:

 $R\theta SA = (TJ - TA) / PD - (R\theta JC) - (R\theta CS)$

 $= (150^{\circ}\text{C} - 25^{\circ}\text{C}) / 0.6\text{W} - (85^{\circ}\text{C/W}) - (0.15^{\circ}\text{C/W})$

= 123°C/W


The heat sink in this example must have a thermal resistance of no more than 123°C/W to maintain a junction temperature of less than +150°C. This calculation assumes a case to sink thermal resistance of 0.15°C/W.

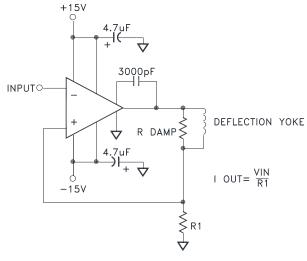
CURRENT LIMIT

The MSK 0041 has an on-board current limit scheme designed to limit the output drivers anytime output current exceeds a predetermined limit. The following formula may be used to determine the value of the current limit resistance necessary to establish the desired current limit.

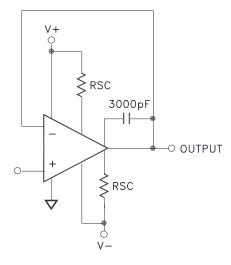
$$RSC = \frac{0.7}{ISC}$$

Current Limit Connection

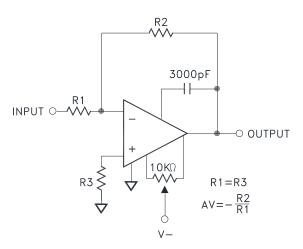
See "Application Circuits" in this data sheet for additional information on current limit connections.

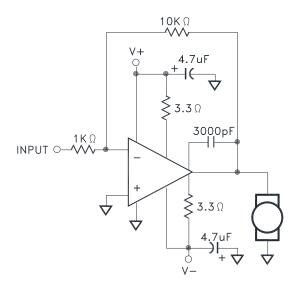

POWER SUPPLY BYPASSING

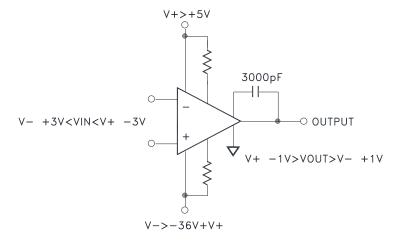
Both the negative and the positive power supplies must be effectively decoupled with a high and low frequency bypass circuit to avoid power supply induced oscillation. An effective decoupling scheme consists of a 0.1 microfarad ceramic capacitor in parallel with a 4.7 microfarad tantalum capacitor from each power supply pin to ground. This capacitor will eliminate any peak output voltage clipping which may occur due to poor power supply load regulation. All power supply decoupling capacitors should be placed as close to the package power supply pins as possible.


SAFE OPERATING AREA

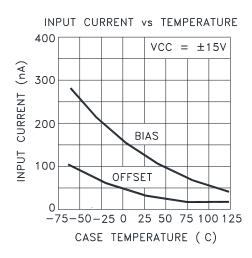
The safe operating area curve is a graphical representation of the power handling capability of the amplifier under various conditions. The wire bond current carrying capability, transistor junction temperature and secondary breakdown limitations are all incorporated into the safe operating area curves. All applications should be checked against the curves to ensure high M.T.B.F.

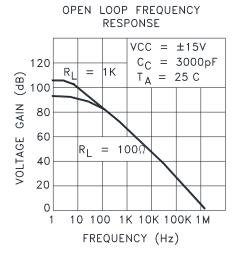

APPLICATION CIRCUITS

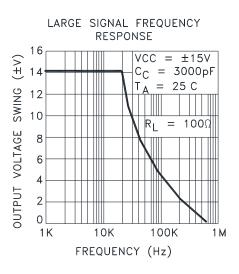

CRT DEFLECTION YOKE DRIVER

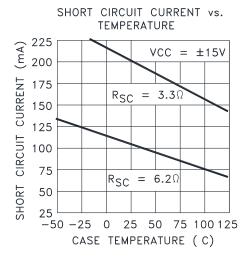

UNITY GAIN CIRCUIT WITH SHORT CIRCUIT LIMITING

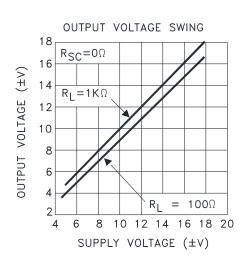
OFFSET VOLTAGE NULL CIRCUIT

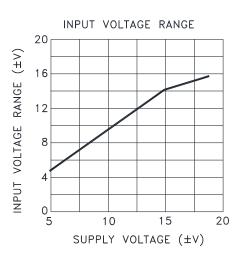


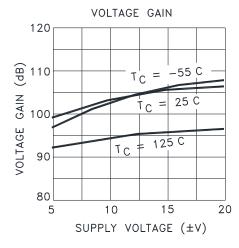

DC SERVO AMPLIFIER

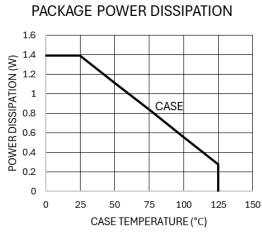


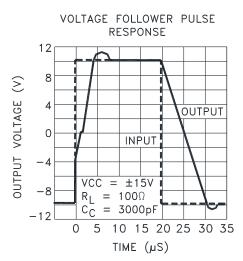

NON SYMMETRICAL SUPPLIES

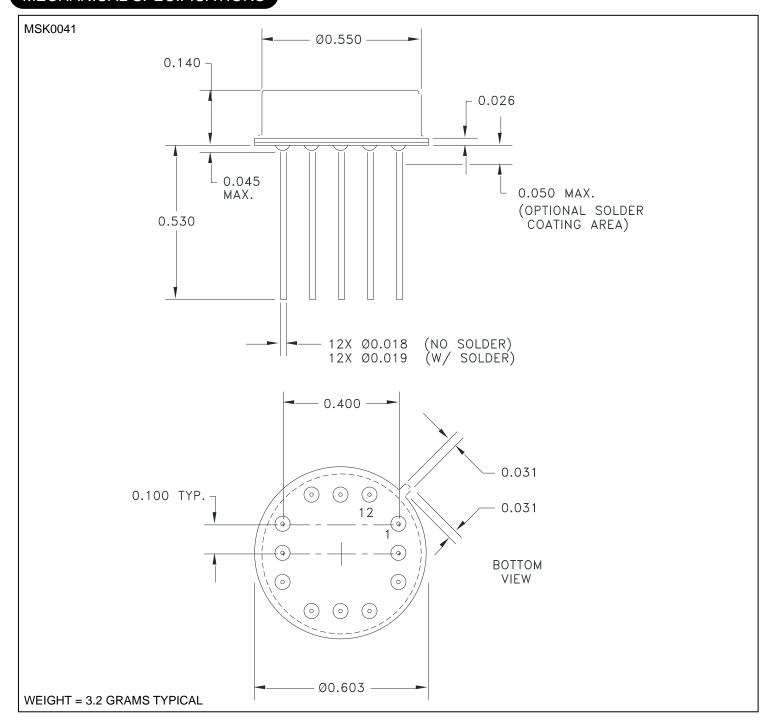

TYPICAL PERFORMANCE CURVES



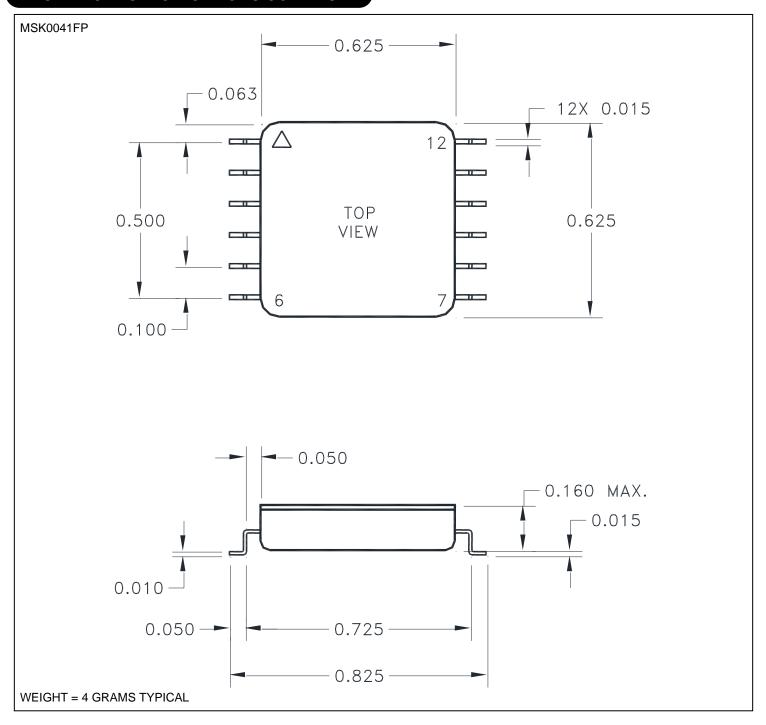








MECHANICAL SPECIFICATIONS


NOTE: ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED.

ORDERING INFORMATION

Part Number	Screening Level
MSK 0041	Industrial
MSK 0041B	MIL-PRF-38534 Class H
5962-8508701X	DLA-SMD

6

MECHANICAL SPECIFICATIONS CONTINUED

NOTE: ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK 0041FP	Industrial
MSK 0041FPH	MIL-PRF-38534 Class H
TBD	DLA-SMD

DEVICE IS ALSO AVAILABLE WITHOUT LEAD FORMING.

REVISION HISTORY

REV	STATUS	DATE	DESCRIPTION
D	Released	09/21	Remove MIL-PRF-38535
Е	Released	09/22	Correct datasheet units and maximum values
F	Released	10/25	Correct power dissipation graph

TTM Technologies

www.ttm.com

The information contained herein is believed to be accurate at the time of printing. TTM Technologies reserves the right to make changes to its products or specifications without notice, however and assumes no liability for the use of its products.

Please visit our website for the most recent revision of this data sheet.