广州添利电子科技有限公司土壤污染 重点监管单位自行监测报告

项目名称:广州添利电子科技有限公司土壤污染重点监管单位 自行监测报告

报告编制人员:

	姓名	职务/职称	任务分工	签名
项目负责人:	翁筱媛	咨询工程师	现场协调、第一、五章编写	家城场
	苏楚琪	咨询工程师	现场协调、第三、四章编写	杰程事
	黎国政	咨询工程师	第二章编写	黎园改
项目组成员:	方超群	咨询工程师	第四、六章编写	3300
审核:	周良华	咨询经理	报告审核	With
审定:	审定: 赵秋香 咨询经理		报告审定	1/2

1 总论

1.1编制背景

根据国务院《关于印发<土壤污染防治行动计划>的通知》(国发〔2016〕31号〕、广东省人民政府《关于印发<广东省土壤污染防治行动计划实施方案>的通知》(粤府〔2016〕145号)、《广东省生态环境厅关于印发广东省土壤与地下水污染防治"十四五"规划的通知》(粤环〔2022〕8号〕等文件要求,重点监管单位应按照规定开展土壤和地下水自行监测。土壤污染重点监管单位中在产工业企业内部的土壤和地下水自行监测按照《工业企业土壤和地下水自行监测技术指南〔试行〕》(HJ1209-2021)来执行。

根据《广州市土壤污染重点监管单位名单》,广州添利电子科技有限公司已于2017年被纳入重点监管单位,2024年10月委托广州市中德环境技术研究院有限公司进行土壤和地下水自行监测方案编制工作,接受委托后,广州市中德环境技术研究院有限公司立即成立项目组,对项目服务需求及工作目标进行了认真的分析与讨论,对地块历史和现状进行了详细调查,并对地块进行现场踏勘,根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)等技术规范开展了采样检测工作,在这些工作的基础上编制完成了《广州添利电子科技有限公司土壤污染重点监管单位自行监测报告》。

1.2编制依据

1.2.1 法律法规与政策要求

- (1) 《中华人民共和国环境保护法》(2014年);
- (2) 《中华人民共和国土壤污染防治法》(2019年1月1日);
- (3) 《中华人民共和国环境影响评价法》(2018年修订);
- (4) 《中华人民共和国水污染防治法》(2017年修订);
- (5) 《中华人民共和国固体废物污染环境防治法》(2020年修订);
- (6) 《中华人民共和国土地管理法》(2019年修订):
- (7) 《土壤污染防治行动计划》(国发〔2016〕31号);

- (8) 《污染地块土壤环境管理办法(试行)》(部令第42号);
- (9) 《建设项目环境保护管理条例》(国务院令第682号,2017年);
- (10) 《国务院办公厅关于印发近期土壤环境保护和综合治理工作安排的通知》(国办发(2013)7号);
- (11) 《国务院关于印发土壤污染防治行动计划的通知》(国发〔2016〕31号);
- (12) 《关于发布<建设用地土壤环境调查评估技术指南>的公告》(环境保护部公告2017年第72号);
- (13) 《关于印发重点行业企业用地调查系列技术文件的通知》(环办土壤 〔2017〕67号);
- (14) 《关于进一步加强重金属污染防控的意见》(环固体〔2022〕17 号):
- (15) 《关于印发地下水污染防治实施方案的通知》(环土壤〔2019〕25 号);
- (16) 《广东省土壤污染防治行动计划实施方案》(2017年);
- (17) 《广东省实施〈中华人民共和国土壤污染防治法〉办法》(2019年3月 1日施行);
- (18) 《广东省人民政府关于印发广东省土壤污染防治行动计划实施方案的 通知》(粤府〔2016〕145号):
- (19) 《广东省人民政府关于印发广东省水污染防治行动计划实施方案的通知》(粤府〔2015〕131号):
- (20) 《广东省环境保护厅关于印发广东省土壤环境保护和综合治理方案的通知》(粤环〔2014〕22号);
- (21) 《关于进一步加强土壤污染重点监管单位环境管理的通知》(粤环发〔2021〕8号);
- (22) 《广东省生态环境厅关于印发广东省土壤与地下水污染防治"十四五" 规划的通知》(粤环〔2022〕8号);

1.2.2 技术导则和标准规范

- (1) 《建设用地土壤污染风险管控和修复术语》(HJ682-2019);
- (2) 《建设用地土壤污染状况调查技术导则》(HJ25.1-2019);
- (3) 《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019);
- (4) 《建设用地土壤污染风险评估技术导则》(HJ25.3-2019):
- (5) 《建设用地土壤修复技术导则》(HJ25.4-2019);
- (6) 《污染地块风险管控与土壤修复效果评估技术导则(试行)》 (HJ25.5-2018):
- (7) 《污染地块地下水修复和风险管控技术导则》(HJ25.6—2019);
- (8) 《土壤环境监测技术规范》(HJ/T166-2004);
- (9) 《地下水环境监测技术规范》(HJ164-2020);
- (10) 《工业企业土壤和地下水自行监测(试行)》(HJ1209-2021);
- (11) 《重点监管单位土壤污染隐患排查指南(试行)》:
- (12) 《国家水污染物排放标准制订技术导则(发布稿)》(HJ945.2-2018);
- (13) 《重点行业企业用地调查信息采集技术规定(试行)》(环办土壤(2017)67号附件1);
- (14) 《在产企业地块风险筛查与风险分级技术规定》(环办土壤〔2017〕 67号附件2);
- (15) 《重点行业企业用地调查疑似污染地块布点技术规定(试行)》(环办土壤(2017)67号附件4);
- (16) 《重点行业企业用地调查样品采集保存和流转技术规定(试行)》 (环办土壤〔2017〕67号附件5);
- (17) 《地下水污染防治实施方案》(环土壤(2019)25号附件4);
- (18) 《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018):
- (19) 《地下水质量标准》(GB/T14848-2017);
- (20) 《一般工业固体废物贮存、处置场污染控制标准》(GB18599-

2020);

- (21) 《地块土壤和地下水挥发性有机物采样技术导则》(HJ1019-2019);
- (22) 《地下水环境状况调查评价工作指南(试行)》;
- (23) 《岩土工程勘察规范》(GB50021-2009年修订版);

1.3 监测范围

根据现场踏勘,广州添利电子科技有限公司位于黄埔区九龙镇凤尾村以北的凤尾工业村内(九佛西路 888 号),占地面积约为 135000m²,建筑面积 208593.5m²。

此次监测范围为整个厂区,包括生产车间、危废仓库、废水处理设施等区域,监测范围见图 1-1。

图 1-1 监测范围红线图

2 企业概况

2.1区域自然环境概况

2.1.1 地理位置

黄埔区位于广州市东部,地处北回归线以南,北纬23°01′57″-23°24′57″,东经113°23′29″-113°36′2″之间。与白云、天河、海珠、增城和从化5个行政区交界,与东莞市和广州市番禺区隔江相望。区内交通干线密集,有东二环高速公路、广深高速公路、广惠高速公路、广河高速公路、广汕公路、广深公路、广园东路、广深沿江高速公路、广深快速路等路网体系。从区内穗港客运码头通过珠江航道到香港约65海里。

广州添利电子科技有限公司位于黄埔区"知识城"的九龙镇凤尾村以北的凤尾工业村内(九佛西路888号)。厂址以北约3公里为从化市太平镇,西南约4公里是白云区钟落潭镇,东南约7公里为九佛镇,地理坐标是北纬23°24′05.99"、东经113°29′0718"。该厂区东临九佛公路,离广从公路线上的新和市约2.5公里,距离广州市区约46公里,该厂址东面350米左右有亨美庄,东南方向约350米有亨美村,南面1公里左右为凤尾村,西南面500米左右为洪山岭,西北方向1公里左右为登塘村。

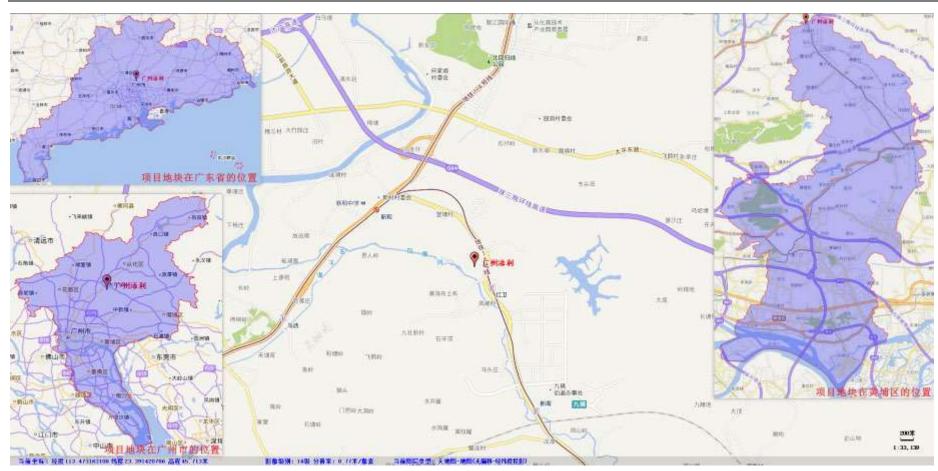


图 2-1 项目地块所在位置

2.1.2 地质地貌概况

项目地处广州市东北部丘陵地区,处于低丘状台地向高丘陵过渡的九佛-竹料丘陵地带,地势北高南低,由高丘陵向平缓丘陵、台地及冲积平原过渡,分别由第三系砾岩、砂岩、粉砂岩和燕山期黑云母花岗岩、伴罗系石英砂岩、砂页岩以及震旦系变质砂岩、石英岩组成,山丘表层为红壤性红土,基岩以花岗岩居多,工程地质条件好,地下水储量较丰富。

2.1.3 水文概况

贯穿"知识城"规划建设范围的三大干流为: 凤凰河、平岗河和金坑河,均呈东西走向; 主要的水库有金坑水库、狮岭水库、新陂水库、白汾水库、腰坑水库等五座水库,而在水库下游泻洪区和河流的周边密集着诸多的水塘湿地。 九佛片水系呈叶脉状分布,镇龙片水系呈扇形分布。全镇有大小水库15宗,其中中型水库1宗,小一型水库2宗,小二型水库12宗,总库容2494.5万m³。

"知识城"规划建设范围地下水受地形、地质、降水、植被的影响,其地下水类型主要为基岩裂隙水。"知识城"规划建设范围的丘陵(约96平方公里)基岩为花岗岩,隐藏有基岩裂隙水。按广州市丘陵地下水径流模数28.5万m³/km/年计,丘陵地下水年经流量约为0.27亿m³。

凤凰河是流溪河的支流之一,位于九龙镇北部,为农灌渠流经厂区南与西侧,经5公里左右的流程汇入流溪河。凤凰河起源于老虎窿水库,在萝岗区内河流总长13公里,经牛栏山、枫下村、红卫村、凤尾村,最后汇入流溪河,集雨面积60.17平方公里。根据《广东省水环境功能规划》(粤环【2011】14号),根据《关于同意调整广州市饮用水源保护区区划的批复》(粤府函【2011】162号),添利公司所在区域位于饮用水源保护区以外,纳污水体凤凰河也位于饮用水源保护区以外,不属于饮用水源保护区范围,但流溪河汇入的流溪河朗庄~湴湖河段属于二级水源保护区。河流环境功能区划表详见表2-。

表 2-1 主要河流环境功能区划表

河道名称	起点	终点	所属水系	长度 (km)	水质 现状	水质 目标
凤凰河	老虎窿水库	流溪河	流溪河	13	V	IV
流溪河	九佛水厂下游 二级保护区下	流溪河东部水厂上 游二级保护区上界	流溪河	13	III	III

界(湴湖)	(官朗庄)		
-------	-------	--	--

2.1.4 气候气象

厂址地处北回归线以南的亚热带,属南亚热带海洋性季风气候。多年平均气温21.9℃,绝对最高温度38.7℃,最低0.8℃。年平均降雨量1677.3毫米,每年降雨多集中在4~9月,前期为热雷雨后期为台风雨,合占降雨量的80%,丰、枯季节雨量不均,枯水期雨量仅占20%。全年主导风向为北风,多出现在9月至次年3月,频率为12%,夏季4月-8月以东南风为主,频率为11%。全年平均气压为1012.4毫巴。全年平均风速为1.9米/秒,静风频率为33%。

2.1.5 社会经济

2.1.5.1 行政区划与人口概况

为加快实施广州城市发展"东进"战略,发挥开发区的辐射带动作用,统筹城乡发展,2005年4月,经国务院批准,在广州开发区基础上,整合周边农村地区,设立萝岗区,管辖面积393.22平方公里。下辖夏港街、萝岗街、东区街、联和街、永和街、九龙镇5街1镇,共30个居委会、28个村委会。截至2009年12月31日,全区常住人口23.16万人,其中户籍人口18.27万人。流动人口30.1万人。

广州添利电子科技有限公司位于《珠江三角洲地区改革发展规划纲要(2008-2020年)》所提出的广州科学城北区的范围。

2005年8月,根据广州市行政区划调整,原白云区钟落潭镇九佛片和原增城市中新镇镇龙片合并为九佛镇龙片区,归广州市萝岗区管辖。是2005年广州市行政区域调整后唯一一个新诞生的镇,也是广州市最年轻的镇级建制。2006年3月29日,成立了中国共产党广州市萝岗区九龙镇委员会;4月12日,成立了广州市萝岗区九龙镇人民政府。2006年9月15日,九龙镇被批准成为广东省中心镇。九龙镇位于广东广州市萝岗区东北部,毗邻大帽峰山东麓,东连增城中新镇,北靠从化太平镇,西临白云区钟落潭镇,南接萝岗区永和街。面积共175.1平方公里。

2.1.5.2 经济发展概况

主要经济指标增速快于广州市平均水平。2012年,萝岗区GDP、规模以上工业总产值、商品销售额、社会消费品零售总额、合同利用外资、实际使用外资、出

口总额8项指标增速分别比广州市增速高出1.6个、0.7个、14.9个、15.5个、1.9个、18.5个、17.7个、1.4个百分点,其中固定资产投资、商品销售额、合同利用外资、实际使用外资4项指标增速比全市平均增速高出10个百分点以上。五项指标总量位居全市第一。规模以上工业总产值、合同利用外资、实际使用外资、出口总额、一般预算收入5项指标总量继续排名各区县首位,分别占全市的29.5%、30.3%、29.5%、27.3%、10.0%。三项指标增速领跑全市。固定资产投资、商品销售额、合同利用外资三项指标增速领跑全市,分别为25.0%、42.1%、19.9%,三项指标占全市的比重提高到11.7%、5.8%、30.3%,分别比上年提高了1.4个、0.7个、4.4个百分点,总量分列各区县第三、第六、第一位。

第三产业增加值增速快于GDP。2012年,我区商贸业、房地产业、其他服务业等第三产业企业全面发展。商品销售额、房地产销售面积、营利性服务业增加值分别同比增长42.1%、34%、26%,共同带动第三产业增加值增长15%,高于全区GDP及第二产业增加值增速3个、3.6个百分点。

三次产业结构进一步优化。2012年,萝岗区三次产业结构为0.4:76.5:23.1,第三产业比重比2011年提高了2.1个百分点,比上年提高幅度高出1.3个百分点,产业结构调整步伐进一步加快。

投资增速稳步走高。2012年全区固定资产投资(法人在地口径)低开高走,全年增长25%,由2011年低于GDP增速1.5个百分点逆转为高出GDP增速13个百分点,为我区经济稳步上行起到了一定的带动作用。其中财政投资130亿元,同比增长16.2%,进一步发挥了对社会投资的引导和扩大效应,撬动全区完成社会投资311亿元,同比增长29.5%,比全区固定资产投资增速高4.5个百分点。

消费持续较高位增长。2012年,我区消费市场延续上年以来的平稳增势,在晶东、苏宁易购等重点零售企业的带动下,增速始终高于GDP增长水平,自5月份以来,社会消费品零售总额增速连续8个月保持全市前列,全年同比增长17.1%,比全市平均水平高出1.9个百分点。

农民收入跑赢GDP,城乡差距进一步缩小。继2011年农民人均纯收入增速首度超过GDP增速后,2012领先GDP增速的优势进一步扩大,全年农民人均纯收入增长14.5%,比GDP增速高出2.4个百分点,总量达到19539元。城镇居民人均可支配收入为39044元,同比增长11.6%,低于农民人均纯收入2.9个百分点,城乡居民

收入比由2011年的2.07:1调整到2.00:1,城乡收入差距进一步缩小。

居民生活水平显著提高。随着人民收入和职工劳动报酬的不断提高,居民消费水平持续增长,人民富裕程度进一步得到提高。2012年全区城镇恩格尔系数34.9%,达到富裕水平。

2.2企业基本情况

广州添利电子科技有限公司主要从事多功能线路板的生产,位于黄埔区"知识城"的九龙镇凤尾村以北的凤尾工业村内(九佛西路888号),所在地经纬度: N23°24′05.99″、E113°29′0718″。添利公司厂区占地面积为135000m²,建筑面积208593.5m²。

广州添利电子科技有限公司项目所在位置如图2-1所示,根据收集到的有关资料地块红线范围及重点监测单元如图2-2所示。

图 2.2-2 厂区平面布局图

2.3企业历史建设项目概况

添利公司属于线路板生产印刷项目,于1994年建厂,采用的主体生产工艺是目前国内线路板印刷行业的主流生产工艺。1996-2000年扩建了PCB线路板生产线,2005-2007年对其中五条污染物较大的生产线进行技术改造。形成了设计年产覆铜板62.4万m²/年及多功能PCB线路板139万m²/年的生产规模。于2011年取消了覆铜板的生产,至此,添利公司的全部产品为多功能PCB线路板139万m²/年的设计生产规模。

2012年9月,添利公司由于电线老化,发生了一起火灾,烧毁了1条沉铜/板电生产线、1条脉冲电镀生产线、1条图形电镀线、1条外层蚀刻生产线。火灾重建前后产品类型和产量对比如表2-1所示。

表 2-1 火灾重建前后产品类型和产量对比表

			火	灾前				火灾后重建生产统	线后	
			面积	(m^2)		年产量面积(m ²)				
产品名称	层数或规格	20)10	20				.,,		
		年产量	产品比例	年产量	产品比例	回顾性评价时实 际产量	产品比例	预计满负荷生产时产量	预计产品比例	设计产量
线路板	≤四层板	602028.8	55.2%	687007.4	58.7%	387403.83	63.9%	69.5万~104.3万平方米	50%~75%	
线路板	四~六层板	165119.14	15.1%	198495.57	17.0%	97744.62	16.1%	20.85万~27.8万平方米	15%~20%	根据客户需求生产不
线路板	八~十二层 板	220498	20.3%	174495.84	15.0%	31021.26	5.1%	6.95万~34.75万平方米	5%~25%	同规格的线路板,但 合计总线路板面积不
线路板	十三~十八 层板	80025.53	7.3%	82845.03	7.05%	63494.03	10.5%	9.73万~16.7万平方米	7%~12%	超过设计产量
线路板	≥二十层板	22711.41	2.1%	26707.4	2.25%	26734.63	4.4%	2.78万~6.9万平方米	2%~5%	
	」能多层线路 证面积	109.037	万平方米	116.697	万平方米	60.64万平方	7米	≤139万平方	7米	≤139万平方米

2.4企业生产情况概况

2.4.1 原辅料及产品情况

添利公司于2011年取消覆铜板生产,现PCB生产原辅料与原环评基本保持一致。

表 2-2 1994 年环评中原辅材表

	物料名称	年消耗量	物料名称	年消耗量
	玻璃纤维布	109万码	环氧树脂	267吨
	二甲基甲酰胺	63504kg	双氰胺	6328kg
覆铜板车间 (CCL车间)	丙酮	41440kg	二甲基咪唑	172kg
(0021117)	三氯乙烷	2448kg	双氧水	492kg
	铜箔	20382kg		
	板料	48.8万m ²	干菲林	6535卷
	除油剂	7258L	微蚀剂	1846L
	预浸剂	11989L	光剂	15690L
	塞孔油墨	3713kg	稀释剂	1956kg
	硬化剂	1956kg	防蚀油墨	9756kg
	干绿油	57580L	镍光剂	1052L
	金光剂	323L	金属镍	2104kg
	氰化亚金钾	184.153kg	硫酸镍	1015L
	柠檬酸	1052kg	铅锡棒	43992kg
印制线路板车间	水溶性松香	47052L	喷锡油	40387L
(PCB车间)	氧化剂	4200kg	油墨	523kg
	后浸剂	3692kg	菲林	433盒
	火山灰	4680kg	显影剂	904瓶
	除泡剂	236L	定影剂	230瓶
	膨松剂	7002L	感光剂	4922kg
	除渣剂	6516L	清洁粉	101kg
	中和剂	21646L	沉铜剂	48276L
	除油剂(1175)	923L	阳极铜	113778kg
	除油剂 (231)	2345L	铜箔	43846kg

物料名称	年消耗量	物料名称	年消耗量
预浸剂(404)	10480kg	树脂片	1809卷
活化剂	1508L	白油	680kg
退锡水	15840kg	783	2400kg
氨水	144吨	丙醇	2400kg
硫酸	2640吨	三氯化铁	72吨
盐酸	801.6吨	硫酸亚铁	504吨
硝酸	18吨	石灰	360吨
碳酸钠	120吨	过硫酸钠	360吨
氢氧化钠	1728吨	双氧水	200吨

表 2-3 1996-2000 年扩建后原辅材料一览表

	物料名称	年消耗量	物料名称	年消耗量
	玻璃纤维布	409万码	环氧树脂	1001吨
	二甲基甲酰胺	238140kg	双氰胺	23730kg
覆铜板车间 (CCL车间)	丙酮	155400kg	二甲基咪唑	645kg
(32114)	三氯乙烷	9180kg	双氧水	1845kg
	铜箔	76432kg		
印制线路	基板料	300万m ²	干菲林	24506卷
	除油剂	121950L	微蚀剂	21250L
	预浸剂	109500L	光剂	55569L
	塞孔油墨	13150kg	稀释剂	6927kg
	硬化剂	6925kg	防蚀油墨	24224kg
	干绿油	203900kg	镍光剂	3726L
板车间	金光剂	1144L	金属镍	7451kg
(PCB车间)	氰化亚金钾	652.14kg	硫酸镍	3560L
	柠檬酸	3581kg	铅锡棒	155800kg
	水溶性松香	166643L	喷锡油	143037L
	氧化剂	142500kg	油墨	1852kg
	后浸剂	13076kg	菲林	1533盒
	火山灰	16575kg	显影剂	3201瓶

836L	定影剂	810瓶
24798L	感光剂	17430kg
23077L	清洁粉	358kg
76663L	沉铜剂	170997L
3269L	阳极铜	680000kg
8305L	铜箔	555288kg
37117kg	树脂片	6301卷
5341L	白油	2350kg
56100kg	783溶剂	8422kg
2500吨	丙醇	8421kg
5907吨	三氯化铁	255吨
2320吨	硫酸亚铁	1785吨
487吨	石灰	1274吨
450吨	过硫酸钠	1274吨
5800吨	双氧水	708吨
	24798L 23077L 76663L 3269L 8305L 37117kg 5341L 56100kg 2500吨 5907吨 2320吨 487吨 450吨	24798L 感光剂 23077L 清洁粉 76663L 沉铜剂 3269L 阳极铜 8305L 铜箔 37117kg 树脂片 5341L 白油 56100kg 783溶剂 2500吨 丙醇 5907吨 三氯化铁 2320吨 硫酸亚铁 487吨 石灰 450吨 过硫酸钠

2.4.2 1994年建厂时期主要设备概况

表 2-4 1994 年环评中主要设备概况

设备名称	数量 (台)	设备名称	数量 (台)	设备名称	数量 (台)
绘图机	3	钻孔机	48	晒网机	1
测微机	1	磨边机	3	干网机	2
底片打孔机	1	除毛刺机	1	光固机	1
菲林显影机	1	对位打孔机	3	锣机	8
菲林曝光机	1	除胶渣/沉铜/全板电镀线	2条	斜边机	1
重氮显影机	1	碳粉处理槽	3	锣槽机	1
放板机	14	塞孔机	4	啤孔机	8
叠板机	24	全自动丝印生产线	2条	最后水洗机	1
翻板机	7	洗网机	3	热液压机	1
磨板机	8	蚀板/剥离油墨线	2条	镀金线	1条
切板机	5	热风式全自动绿油丝印线	1条	洗板机	1

收板机	7	紫外线全自动绿油丝印线	1条	真空包装机	1
压板机	1	固化炉	1	张网机	2
碱性冲瓶机	3	预固化机	1	显影机	1
酸性蚀板机	2	风干机	3	涂布机	1
化学前处理机	1	镀铜电镀线	3	车床	2
压模机	1	棕化线	1条	平面磨床	1
退膜机	1	喷锡水平机前处理线	1条	侧床	2
曝光机	10	水平喷锡机	1	线切割机床	2
碱性退菲林机	47	喷锡水平机后处理线	1条	钻床	4
烘炉	25	喷锡/吹气和上松香机	1	锯床	2
辘菲林机	1组	防氧化膜	1条	热处理器	2
冷水机	3	手动丝印线	2条	铣床	2
模压机	2	喷锡前处理机	1	弯板机	1
吸收塔	8	喷锡后处理机	1	真空吸尘器	7
打孔机	2	喷锡机	1	吸尘器	5
黑氧化线	1条	喷锡抽风机	2	空压机	3
压板系统	2套	发电机	5	冷却水塔	17
磨铜板机	1	水塔	9	防尘系统	8套
切固化片机	1	水泵	9	叠版系统	1套
剪切机	2	注塑机	34	送风机	21
热压机	1	排风机	20	实验室仪器设备	1套
含浸机	1	风机	18	通风机	1
混合槽系统	1套	抽风机	2	切铜箔机	1
树脂片剪切机	1	丝印机	4	开油机	1

2.4.3 1996-2000 年扩建后设备情况

表 2-5 1996-2000 年扩建后项目主要设备一览表

名称	单位	数量	名称	单位	数量
绘图机	台	12	喷锡/吹起和上松香机	台	2
润微机	台	2	喷锡前处理机	台	4
磨板机	台	23	喷锡后处理机	台	4
压板机	台	3	喷锡机	台	4

碱性冲板机	台	9	喷锡抽风机	台	12
吸收塔	台	42	发电机	台	22
黑氧化线	条	4	啤孔机	台	25
磨钢板机	台	3	最后水洗机	台	9
热压机	台	3	热液压机	台	2
含浸机	台	2	镀金机	台	6
钻孔机	台	82	真空包装机	台	5
除胶机/沉铜/ 全板电镀线	条	5	真空吸尘器	台	12
碳粉处理槽	台	8	吸尘器	台	82
镀铜电镀线	条	5	冷却塔	台	40
棕化线	条	4	除尘系统	套	3
燃油锅炉	台	3	叠板系统	套	2
喷锡水平机 前处理线	条	4	实验室仪器设备	套	1
内层蚀板	条	5	水平喷锡机	台	4
外层蚀板	条	5	镭射钻机	台	2
手动丝印机	台	2	自动丝印机	台	57

2.4.4 2012 年火灾后重建设备情况

表 2-6 设施及布置情况

编号	名称	数量	单位	主要设备的规格型号	工艺	摆放位置
1	自动开料机	4	台	FMP-180	开料	DA-5F开料房
2	自动磨边机	3	台	PAEB-275S	压板	DA-2F切板边
3	洗板机	10	台	HL-CL1/XB-03	开料	DA开料工序
4	曝光机	104	台	HMW-680GW/HMW201B- 5K	内层干菲林/外层干 菲林	DA/D3洁净房
5	手动曝光机	7	台	ORC-401/ORCEXM-1201F	内层干菲林/外层干 菲林	DA/D3洁净房
6	酸性蚀刻线	9	台	TCM	内层蚀刻	DA蚀刻工序
7	内层化学清洗线	11	条	HL-CLXD	内层干菲林/外层干 菲林	DA/D3磨板房
8	内层火山灰磨板	2	条	UB650	内层干菲林/外层干 菲林	DA/D3磨板房
9	黑化线	4	条	DG04050198	黑化	DA-4F黑化 /D5-1F黑化
10	棕化线	4	条	MULTIBONDLINE	棕化	DA-2F黑化
11	热压机	14	台	LHMCV-1100-500-15	压板	DA压板工序
12	钻机	241	台	ND-6L180E	钻孔	D9钻房/D3钻房
13	单台钻机	1	台	ZHZ-13	内层切板	DA切板
14	吸尘机	208	台	Cfm3507W	钻孔	D9钻房
15	中央吸尘机	11	台	AD10B5003B	钻孔	D9钻房

编号	名称	数量	单位	主要设备的规格型号	工艺	摆放位置
16	镭射钻机	15	台	GS-600	钻孔	D3-1F镭射钻房
17	沉铜磨板机	5	条	SCRUBBX4B2000	沉铜	D3沉铜工序
18	沉铜C1线	1	条	DG04040164	沉铜	D3-4F沉铜
19	沉铜B3线	1	条	CT-02	沉铜	D3-3F沉铜
20	板面电镀A1线	1	条	DG0309035	板面电镀	D3-2F板面电镀
21	板面电镀C1线	1	条	MW05012	板面电镀	D3-4F板面电镀
22	板电干板机	4		B411HL01511	板面电镀	D3板面电镀
23	干菲林火山灰磨板机	6	条	PUMEXSHD/A24	外层干菲林	D3干菲林磨板 房
24	干菲林磨板机	4	条	HL-CL5	外层干菲林	D3干菲林磨板房
25	干菲林冲板机	8	条	HL-DLWF	外层干菲林	D3干菲林冲板 房
26	图形电镀线	2	条	DG040404163	图形电镀	D3-4F图形电镀
27	碱性蚀刻线(2条生产,1条停产)	3	条	SES36EP04001(R4)	外层蚀刻	D3外层蚀刻
28	喷锡线	2	条	HSL-350	喷锡	D3-2F喷锡
29	沉锡前处理线	1	条	MTP25NKBA01A1	沉锡	D3-3F沉锡
30	垂直沉锡线	1	条	DG0305003	沉锡	D3-4F沉锡
31	水平沉锡线	1	条	W080520	沉锡	D3-3F沉锡
31	抗氧化线	2	条	EK25NT03002(R2)	抗氧化	D3-3F抗氧化
33	IC洗板机	3	条	12EK25NTAA03	表面处理	D3-4F沉银
34	沉银线	1	条	IE20NP04004	沉银	D3-4F沉银
35	沉金线	1	条	DG04110491	沉金	D3-4F沉金

编号	名称	数量	单位	主要设备的规格型号	工艺	摆放位置
36	镀硬金线	1	条		板面电金	D3-3F镀硬金
37	镀金手指线	1	条	DG0309082	镀金手指	D3-3F镀金手指
38	板面镀镍金线	1	条	SerialNO970820	板面电金	D3-3F板面电硬金
39	磨板机	1	条	PUMIFLEX2000A/AS	湿绿油	D3湿绿油磨板房
40	火山灰磨板机	3	条	PUMEX-SHD024	湿绿油	D3湿绿油磨板房
41	化学清洗机	1	条	CCP20NKBA03	湿绿油	D3湿绿油磨板房
42	绿油冲板机	7	条	DLW26EP04001	湿绿油	D3湿绿油冲板房
43	静电喷涂线	2	条	GSPC-6/GCP-731P	湿绿油	D3湿绿油洁净房
44	白字焗炉	24	台	O-S18EL21KP	湿绿油	D3湿绿油白字
45	隧道炉	4	台	SYS-1950	湿绿油	D3湿绿油
46	绿油焗炉	48	台	O-S27LR-22W	湿绿油	D3湿绿油
47	锣机	65	台	SogotechSR-4B22A	外形加工	D3锣房
48	V坑机	8	台	ALFAMAT11	外形加工	D3V-cut房
49	自动斜边机	2	台	TR-6A	外形加工	D3外形加工
50	外形加工洗板机	6	台	XB-01	外形加工	D3外形加工
51	真空包装机	3	台	SPM-5580R	包装	D3包装部
52	风机	128	台	FAN-SYS-040	所有生产工序	D3/DA/D5/D9楼顶
53	锅炉	3	台	CB100-200	锅炉房	锅炉房
4ti əlv bk	RO制水设备电机泵	2	台	CRNCM64-5A-FB-V- HOOV	纯水	D3DI水房
纯水处 理	南)石	2	台	CRN45-3-2	DI水	D6废水站
	离心泵	2	台	CR90-3AFAFEUUF	DI水	D6废水站

编号	名称	数量	单位	主要设备的规格型号	工艺	摆放位置
	化工离心泵	22	台	KF65-17	废水站	D6废水站
	污水泵	10	台	KF80-20		D6废水站
	离心脱水机	1	台	LW400ND		D6废水站
污水处	清水泵	4	台	150KF-20		D6废水站
理站	搅拌机	20	台	LC-100-2.2/200		D6废水站
	化工泵	20	台	IH50-32-125		D6废水站
	污水泵	10	台	4PWF		D6废水站
	污泥泵	10	台	IH80-50-200		D6废水站
	空压机	24	台	GA110	空压站	D3/D5/D9空压房
	空压机	36	台	S150	空压站	D3/D5/D9/AF空压房
\	干燥机	8	台	CH210	空压站	D3/D9空压房
空压机 站 _	干燥机	10	台	FD300	空压站	D3/D5空压房
24	干燥机	15	台	PLD-200	空压站	D3/D5/D9/AF空压房
	干燥机	6	台	RDA350	空压站	D3/D5/D9空压房
	干燥机	4	台	PLD-300	空压站	D3/D5/D9空压房
空调	中央空调	130	台	60ST-080	车间	D3/DA/D9车间及办公室
		2012年1	1月更新设备(火灾后重建的设备)		
1	三合一线 (沉铜+板电+除胶)	1	条	X11052	沉铜板电	D3-5F三合一线
2	图形电镀线	1	条	PTP-59	图形电镀	D3-4F图形电镀
3	脉冲电镀线	1	条	Y11047	图形电镀	D3-5F图形电镀

编号	名称	数量	单位	主要设备的规格型号	工艺	摆放位置
4	蚀刻线	1	条	B407HL01375	外层蚀刻	D3-4F蚀刻

2.4.5 工艺流程变化概述

2.4.5.1 覆铜板生产工艺(1994年-2011年)

添利公司覆铜板工艺如下图所示,覆铜板工艺从建厂使用至2011年,2011年后取消覆铜板生产。

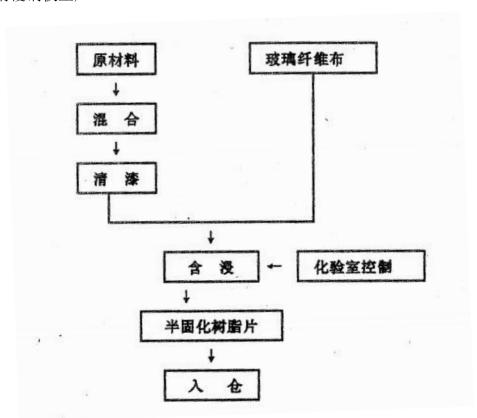


图 2-2 覆铜板生产工艺流程

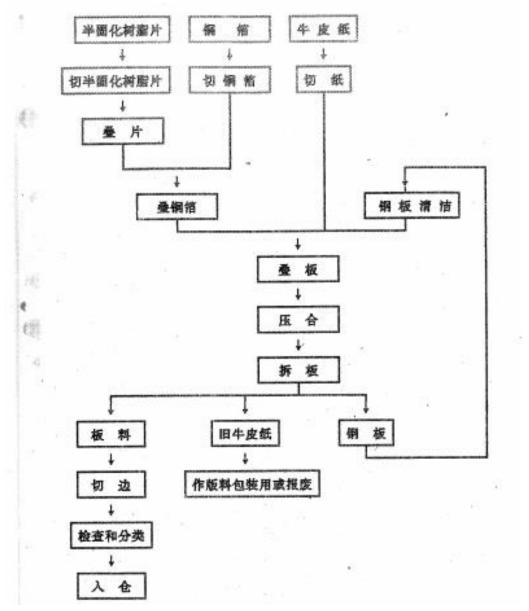


图 2.4-3 覆铜板生产工艺流程

2.4.5.2 PCB 生产工艺流程

如表2.7所示,为1994年建厂时PCB的生产工艺,1996年-2000年改扩建时, 在原工艺基础上,内层板氧化工序增加了4条棕化线。

2005年以来,为了生产更环保的产品,满足欧盟电子电气产品环保指令ROHS(关于在电子电气设备中限制使用某些有害物质指令)的要求,减少产品中的有害物质含量,添利公司开启对喷漆和丝印工序生产线的技术改造。于2005年安装1条沉银和2条沉锡生产线替代公司原有的3条喷锡生产线(替代后还

剩一条喷锡线),不生产铅的沉锡和沉银线替代喷锡线。

2006年-2007年采用静电喷涂生产线替代2条旧式的手动丝印线,在印制过程中,静电喷涂因其是在密封环境下把油墨转移到产品上,自动化程度更高,产品质量更好,产生的废气更易收集处理,工作环境更好。

	·	ス 2-7 T CD 工 乙切ば生 (17)74 十-2007 十7
序号	工序名称	主要功能
1	开料	将覆铜板或铜箔材料剪切成产品生产所需求的尺寸。
2	干菲林	利用菲林胶片及感光材料等,通过曝光等把线路图形转移到 板面上。
3	蚀刻	把铜板上非线路部分蚀刻去除,在板面上形成线路。
4	光学检查	利用自动光学检测机检查线路有无短路/开路等。
5	内层黑氧化	对内层线路板进行氧化处理,在表面形成保护层。
6	压板/排版	把多块内层线路板及铜箔排好后压合成一块线路板。
7	钻孔	在产品上钻出所需的导通孔、编码识别孔及定位孔。
8	沉铜及全版电 镀	对钻孔后的铜板进行表面处理、孔内化学沉铜,使正反面导通。对板进行表面处理、镀铜,增加板面铜或线路的厚度
9	图形电镀	对线路板上的线路图形进行电镀,形成导电线路
10	丝印绿油	利用丝印法在板面上生成阻焊层。
11	丝印白字	利用丝印法在板面上印上文字。
12	表面处理	利用镀金手指、喷锡等工艺在线路表面生成锡/金等表面层。
13	外型加工	根据客户的要求冲出或锣出客户所需要的产品。
14	电测	对产品的电性能进行检测。
15	终检	对产品的外观进行检验,保证出给客户的产品为良品。

表 2-7 PCB 工艺流程(1994 年-2007 年)

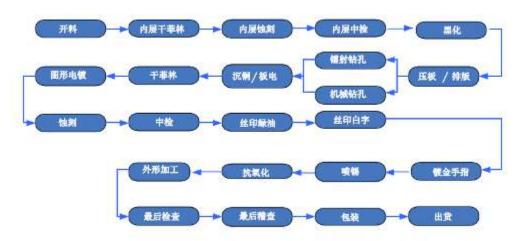


图 2-4 PCB 线路板生产工艺(1994年-2007年)

图 2.4-5 PCB 线路板生产工艺(2007年至今)

2.4.6 工艺流程及产排污情况

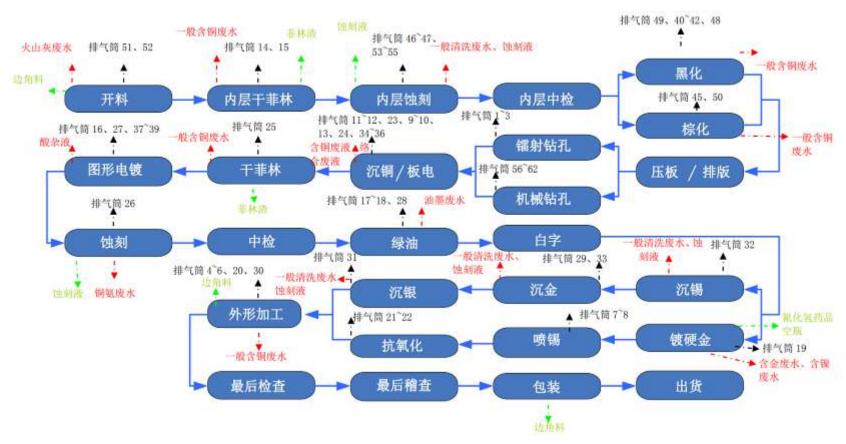


图 2-6 总体生产流程及产排污情况

2.4.6.1 覆铜板工艺 (1994年-2011年)

覆铜板废气排放包括工艺废气和燃油废气。

覆铜板车间在生产中会散发出有机溶剂丙酮、二甲基甲酰胺气体,车间废气排风机风量约10000m³/h,废气经水吸收后排放。吸收塔中的循环水定期排至厂内废水站处理,量约0.8吨/天。

燃油废气主要来自五台柴油发电机和一台燃油锅炉。添利公司于2006年后使用市政供电,从2007年开始,项目柴油发电机陆续关闭使用。

2.4.6.2 开料

由于项目使用的基材(覆铜板或铜箔材料)的规格要远远大于日常使用的 各类线路板,因此,需要在进一步生产之前将基材按照产品要求切割成不同尺 寸的备用材料。

产污分析:该工序将产生部分固体废弃物(覆铜板边角料),同时基材的切割将产生粉尘;一般清洗废水(开料洗版)。

2.4.6.3 内层干菲林及内层蚀刻

内层干菲林:采用物理磨板直接用毛刷刷,利用毛刷在铜板的相对运动将铜板表面的杂质去掉,贴膜之前酸洗,酸洗的目的是将铜板表面的氧化部分去除,采用的药水是硫酸,经磨板粗化酸洗的铜板,经干燥、贴上干膜后,用紫外线曝光。曝光后的干膜变硬,将设计的图形转移到PCB上。再用含碳酸钠的显像液将线路以外未感光硬化的干膜溶液去除。

内层蚀刻: 蚀刻是将裸露的铜面蚀掉,从而得到我们所需的图形。褪膜是利用强酸将干膜溶解剥离,最后,用含氢氧化钠的水溶液溶解线路铜上硬化的油墨或干膜,使线路铜裸露出来。

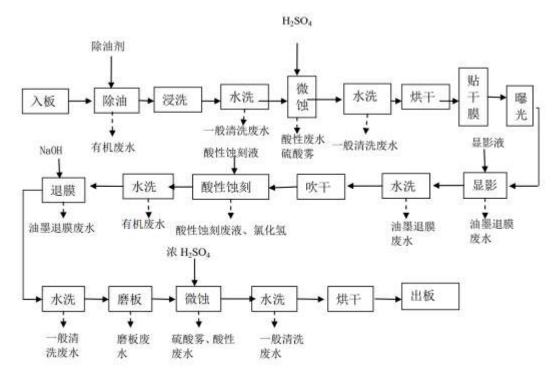


图 2-7 内层干菲林及内层蚀刻工艺流程及产排污节点图

工作原理为:

Cu+CuCl→2CuCl

4CuCl+2HCl+2HClO→4CuCl₂+2H₂O

 $2CuCl+HCl+O_2\rightarrow 2CuCl_2+2H_2O$

产污分析:油墨退膜废水、有机废水、一般清洗废水、酸性废水;硫酸雾、氯化氢酸雾废气;酸性蚀刻液等。

2.4.6.4 内层中检

用自动光学检测机来检测线路是否有短路、开路,线路是否符合设计要求。

产污分析:不合规格的残次品。

2.4.6.5 黑化和棕化

黑化和棕化是继内层开料、干菲林、内层蚀板之后对生产板进行铜面处理,在内层铜箔表面生成一层氧化层以提升多层线路板在压合时铜箔和环氧树脂之间的接合力。添利公司现有黑化和棕化两个工艺,黑化较棕化稳定但是效率低,花费大。

产污分析: 硫酸雾; 络合废水(黑化、棕化清洗水); 有机废水。

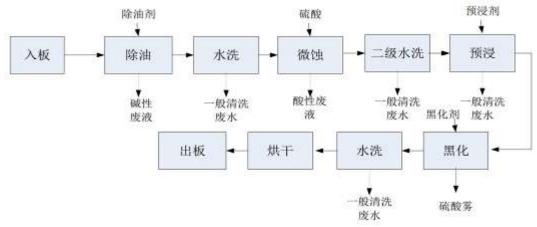


图 2-8 黑化工艺流程及产排污节点图

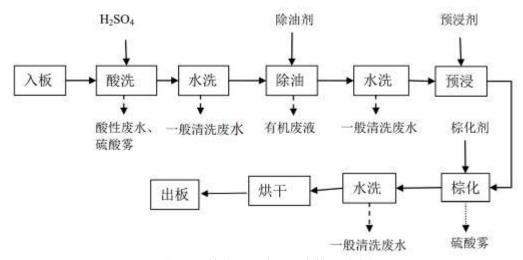


图 2-9 棕化工艺流程及产排污节点图

2.4.6.6 压板

压板工艺是将内层完成线路图形的线路板与铜箔和半固化片一起通过高温 高压的方式粘合在一起,形成制作外层线路图形的基板。压合过程需要控制内 层之间的对准度和半固化片的流胶,适合的压合温度、时间及压力是基本的保 证。通时还需要根据产品的不同采用不同的叠板方式,保证半固化片与内层经 纬向一致。

产污分析:该工序将产生废边角料。

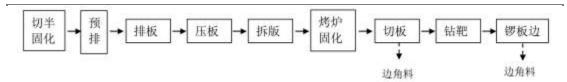


图 2-10 压板工艺流程及产排污节点图

2.4.6.7 钻孔

添利公司钻孔工艺为机械钻孔和镭射钻孔。机械钻孔是采用数控钻孔机在 设计的特定位钻孔;镭射钻孔采用专用的镭射钻孔机在线路板上打孔,其技术 要求比一般的机械钻孔高。

产污分析: 两种钻孔工艺均会产生钻孔粉尘。

2.4.6.8 沉铜/板电工序

添利公司现有两种生产线,包括沉铜线+板面电镀线和三合一线线(即将去胶+沉铜+板电合更新为一条新的生产线)

(1) 沉铜线+板面电镀线

通过化学方法在通孔壁上沉积一层铜,使内层、次外层线路板上下电气互连。化学铜溶液的主要成分是硫酸铜、甲醛、氢氧化钠,该溶液呈强碱性(pH=12~13),工作温度60~65℃。

具体说明:

膨松: 去除表面氧化、油污等杂质,清除孔口披锋及粉尘等杂质。

除胶:使孔壁环氧树脂表面粗糙,以提高孔壁和化学铜之间的接合力,并提高孔壁吸附量。其原理是利用高锰酸钾在碱性环境中强氧化性的特性将孔壁表面树脂氧化分解。化学反应式: $4MnO^-+C(树脂)\rightarrow MnO^2-+CO_2+H_2O$ 。经KMnO4处理后的板面及孔内带有MnO4-等药水残留物,因MnO4-具有氧化性,故除胶后的板必须中和处理,中和常用 $H_2O_2-H_2SO_4$ 酸性溶液。

中和:利用稀硫酸中和除胶过程MnO⁴等药水残留物。

除油:利用除油剂(稀硫酸)去除铜表面油污、指纹等杂质。

微蚀:采用过硫酸钠常作强氧化剂用于微蚀,经微蚀后的线路板孔及铜板面更有利于后续沉铜、镀铜等电镀工艺。

预浸:为稳定胶体钯活化液的pH,不使胶体钯活化液快速变化,提高其使用寿命,在活化前首先把粗化处理的印制板在SnCl₂·H₂O、HCl溶液中预浸处

理。

活化:目的是在印制板孔、壁表面吸附上催化金属微粒,这些微粒的吸附可以使化学沉铜反应在绝缘基体上顺利进行,目前用于生产的是胶体钯活化液,它从根本上消除了金属微粒和铜之间产生置换反应的问题。具体步骤为将预浸处理过的印制板直接浸入胶体钯活化液中进行活化处理,操作过程中工件不停缓慢移动,促使印制板孔内的活化液充分流动,有利于孔壁被活化液浸润,使钯核沉积在孔壁和板面上完成活化过程。

加速处理:基体表面经活化处理后吸附的是以金属钯为核心的胶团,二价锡离子包围在钯核周围,要使胶体钯的活性增强,就要使钯核暴露出来,因此要采取一定的措施在化学沉铜前除去一部分二价锡离子,加速处理液主要由H₂SO₄溶液组成,印制板胶体钯的活化性能通过加速处理得到提高,同时多余的碱式二价锡离子被去除,增加了化学沉铜与基体之间的结合强度。

化学沉铜:利用甲醛在碱性条件下的还原性来还原被络合的可溶性铜盐。 反应式: CuSO₄+2HCHO+4NaOH→Cu+Na₂SO₄+2HCOONa+2H₂O+H₂,此反应 过程为氧化还原反应,沉铜药水中的硫酸铜是溶液中的主盐,主要提供二价铜 离子; 氢氧化钠是使溶液保持一定的pH,因为甲醛在碱性条件下,才具有还原 作用; 甲醛起还原剂作用。化学沉铜与电镀在本质的差别在于: 化学沉铜的电 子由还原剂甲醛提供,电镀则是由电源提供。

该工序目的主要是通过对上一步钻孔进行膨松、除胶渣处理,再对孔内壁进行催化、微蚀,为MI压板结构的多层板提供一个良好的孔金属化条件。随后,通过化学沉铜工序即可将多层线路板的各层线路连通。

产污分析:有机废水、高锰酸钾废液、一般清洗废水、硫酸雾废气、络合废水和沉铜废液、碱性废水。

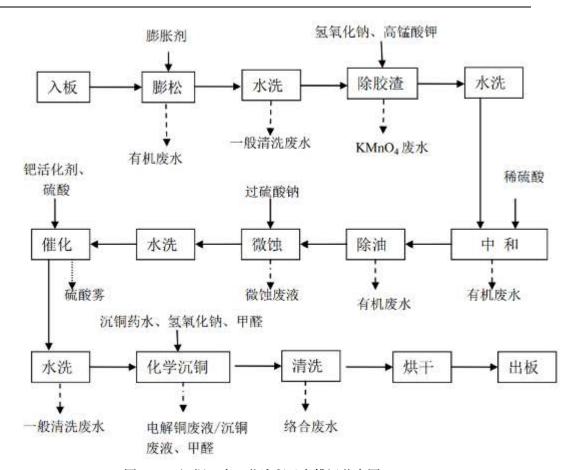


图 2-11 沉铜工序工艺流程及产排污节点图

为使线路板上铜线达到一定厚度要求,将线路板浸置于含有硫酸铜、硫酸及微量氯离子和添加剂(如光泽剂)的电镀槽液的阴极,阳极则为铜块,供给直流电源,即可在基板的线路上镀上一层铜,又称全板电镀薄铜。

产污分析:酸性废水、一般清洗废水;硫酸雾废气以及电解铜废液。

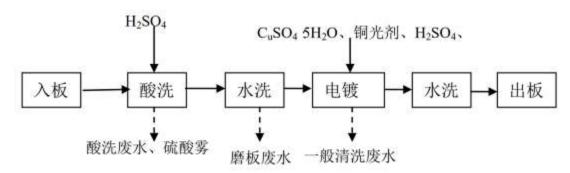


图 2-12 板面电镀铜工序工艺流程及产排污节点图

(2) 三合一线(除胶+沉铜+板面电镀)

三合一生产线是其中一条已更新的生产线,是将沉铜+除胶+板面电镀整体替换。该线是2012年添利公司火灾后重建的生产线。

产污分析:硫酸雾、盐酸雾、甲醛;一般清洗废水;酸洗废水、有机废水;微蚀废液、沉铜废液。

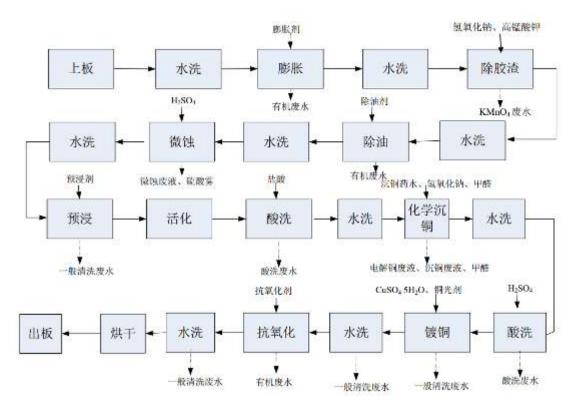


图 2-13 三合一线生产工艺流程及产排污节点图

2.4.6.9 干菲林

印刷线路工序主要目的是将底片上的线路转移到覆铜板上,具体工序如下:

(1) 制作底片

外购的胶片经曝光机曝光后,再经显影和定影,制成底片。

产污分析:该工序有制作底片的显影废液。

(2) 将底片上的线路转移到覆铜板上

制作好的底片和贴上干膜的覆铜板一同放到曝光机上,在曝光机的作用

下,光引发剂吸收了光能分解成游离基,游离基再引发光聚合单体进行聚合交联反应,反应后形成不溶于稀碱溶液的体型大分子结构。底片上黑色的地方不会透光,因此,该处干膜不会硬化。曝光后的覆铜板经水(添加Na₂CO₃)冲洗,将未硬化的干膜冲洗掉,覆铜板即露出与底片上相反的线路,具体的工艺流程见图,工艺参数见。

产污分析:该工序有干膜渣产生。产生硫酸雾和氯化氢废气。显影冲洗水属高浓度的有机废水产生,主要污染因子为化学需氧量;产生一般清洗废水、酸性废水、油墨退膜废水;油墨菲林渣(HW16)、酸性蚀刻液。。

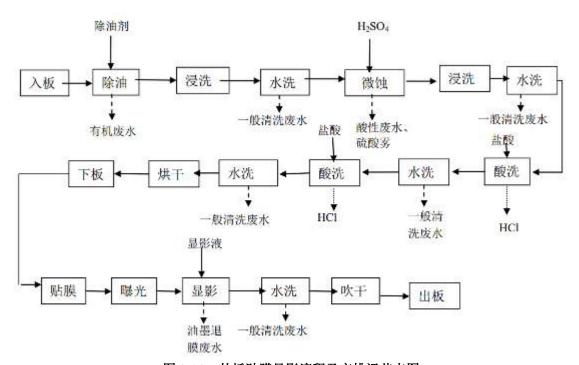


图 2-14 外板贴膜显影流程及产排污节点图

2.4.6.10 图形电镀

公司现有两种图形电镀线,一种为建厂就沿用到现在的图形电镀线,共二条;另一种2012年重建的图形线,其中一条与原图形电镀线一样的新线,另一条是更新改造的脉冲电镀线。

(1) 原有图形电镀线(1994年至今)

工艺说明:所谓图形电镀,就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程,是利用电解作用使金属或其它材料制件的表面附着

一层金属膜的工艺从而起到防止腐蚀,提高耐磨性、导电性、反光性及增进美观等作用。

在盛有电镀液的镀槽中,经过清理和特殊预处理的待镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。电镀液由含有镀覆金属的化合物、导电的盐类、缓冲剂、pH调节剂和添加剂等的水溶液组成。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。阳极的金属形成金属离子进入电镀液,以保持被镀覆的金属离子的浓度。电镀时,阳极材料的质量、电镀液的成分、温度、电流密度、通电时间、搅拌强度、析出的杂质、电源波形等都会影响镀层的质量,需要适时进行控制。具体的工艺流程见下图,工艺参数见下表,产污情况见下表。

产污分析:有机废水、酸性废水和一般清洗废水;硫酸雾废气以及微蚀废液。

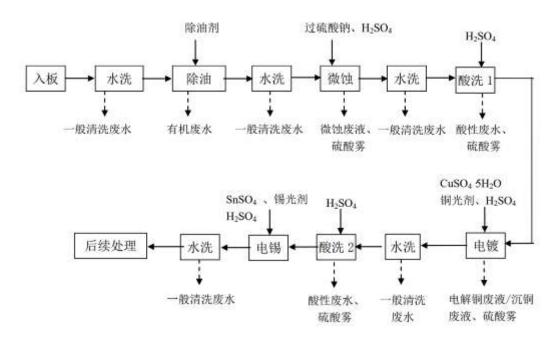


图 2-15 图形电镀线工艺流程及产排污节点图

(2) 脉冲图形电镀线(2012年至今)

产污分析:废气:硫酸雾;废水:一般清洗废水(电镀铜清洗废水);固废:硝酸废液。

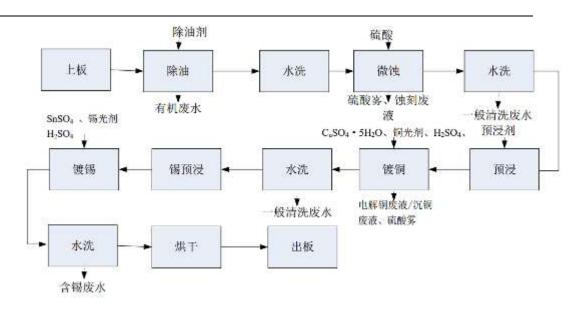


图 2-16 脉冲图形电镀工艺流程及产排污节点图

电镀线	工艺名称	所用原辅料	工艺参数
	除油	酸性除油剂	槽体积: 2000升,面积: 2.24m², 药水更换周期半个月换1次
	水洗		五级逆流,槽体积: 4000升,废水溢流速度10L/min,设备保养: 更换周期1周换1次
	微蚀	硫酸	槽体积: 2000升,面积: 2.24m², 药水更换周期半个月换1次
电镀铜锡线5条	水洗		二级逆流,槽体积: 4000升,废水溢流速 度10L/min,设备保养: 更换周期1周换1次
电镀铜物线J东	镀铜	硫酸、硫酸铜	槽体积: 5800升,面积: 5.6m², 药水更换周期: 不更换
	水洗		二级逆流,槽体积: 4000升,废水溢流速 度10L/min,设备保养: 更换周期1周换1次
	镀锡	硫酸、硫酸铜	槽体积: 5800升,面积: 5.6m², 药水更换周期: 不更换
	水洗		二级逆流,槽体积: 4000升,废水溢流速 度10L/min,设备保养: 更换周期1周换1次

表 2.4-5 电镀流程及工艺参数

2.4.6.11 外层蚀刻

以碱性蚀刻液将铜箔基板上未覆盖蚀刻阻剂的铜面全部溶蚀掉,仅剩被锡保护的线路铜,而后用酸性的剥锡液进行剥锡处理,再进行水洗。

碱性蚀刻时,在氯化铜溶液中加入氨水,发生络合反应,CuCl₂+4NH₃ \rightarrow Cu(NH₃)4Cl₂在蚀刻过程中,基板上面的铜被〔Cu(NH₃)₄〕 $^{2+}$ 络离

子氧化,其蚀刻反应: $Cu(NH_3)_4Cl_2+Cu\rightarrow 2Cu(NH_3)_2Cl$ 所生成的($Cu(NH_3)_2$) ¹⁺ 不具有蚀刻能力,在过量的氨水和氯离子存在的情况下,能很快地被空气中的氧所氧化,生成具有蚀刻能力的($Cu(NH_3)_4$) ²⁺络离子,其再生反应如下:

 $2Cu(NH_3)_2Cl+2NH_4Cl+2NH_3+1/2O_2\rightarrow 2Cu(NH_3)_4Cl+H_2O$; 所以在蚀刻时,应不断补加氨水和氯化铵; 也称为碱性蚀刻液的再生。

产污分析:废气:氨;废水:铜氨废水(碱性蚀刻后水洗);固废:含铜碱性废液、碱性蚀刻液。

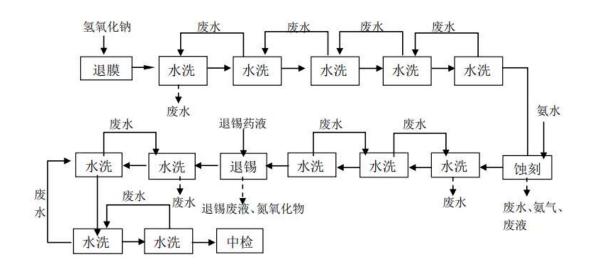


图 2-17 项目蚀刻工艺流程及产排污节点图

2.4.6.12 中检

外层中检:用自动光学检测机来检测线路是否有短路、开路,线路是否符合设计要求。

产污情况:不合格残次品。

2.4.6.13 绿油

采用网印方式在板上印刷一层阻焊油墨,做成阻焊图形,其作用是方便对 组件的焊接加工,节省焊锡并预防线路短路,可以保护铜线,防止零件被焊到 不正确的地方。阻焊印刷的网版制作过程与线路印刷网版制作流程相同。

网版批量生产完后,用抹布蘸防白水将网版上的线路擦洗掉,重复使用该

网版。

产污分析: 网版制作过程中会产生显影废液、冲版废水、油墨有机废气、废油墨罐。阻焊印刷过程会产生有机废气、废油墨罐。

2.4.6.14 白字符印刷

印刷工序指在线路板上用油墨印制文字。

产污分析:该过程产生有机废气。

2.4.6.15 镀硬金、喷锡、抗氧化工艺

(1) 镀硬金

按照客户需要,部分板面需进行电镀镍金处理,基板表面先镀上一层镍后再镀上一层金,目的是提高耐磨性,减低接触电阻,防止铜氧化,提高连接的可靠性。镀镍金槽旁设置的回收设备定期回收,后接二级漂洗槽,清洗水中还含有少量镍、金,连续溢流时经过离子交换树脂吸附设备使镍、金得以回收,排放出的清洗废水可进入含镍、金废水处理系统处理。该工段主要产生的污染物:一般清洗废水、有机废水、酸性废水、含镍废水;硫酸雾废气、氰化氢废气以及微蚀废液。

产污分析:一般清洗废水、有机废水、酸性废水、含镍废水;硫酸雾废气、氰化氢废气;含金废水、废镍废水、微蚀废液、含氰空瓶(HW49)。

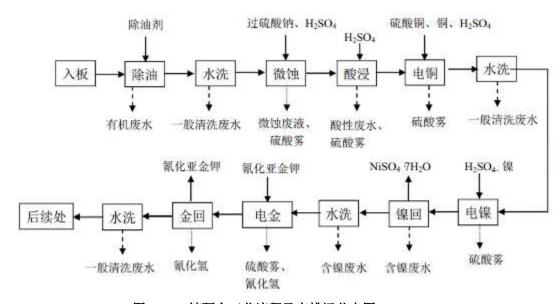


图 2-18 镀硬金工艺流程及产排污节点图

上板 → 微蚀 → 水洗 → 磨板 → 水洗 → 活化 → 水洗 → 镀镍 → 水洗 → 活化 → 镀金 → 金回收 → 水洗 → 风干 → 下板。 图 2-19 金手指工艺流程图

(2) 喷锡

喷锡线主要用于在线路板表面喷上铅锡合金。喷锡是将板面先预热、上松 香然后喷锡,目的是保持印制板良好的可焊性能、抗腐蚀性能。

产污分析:废水:磨板废水、酸性废水;铅及其化合物、锡及其化合物、硫酸雾、氯化氢;固废:含铅废锡渣(HW31)、含锡废液。

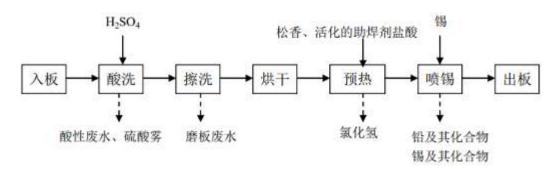


图 2-20 喷锡工艺流程及产排污节点图

(3) 抗氧化

工艺说明:为将印制电路板浸在抗氧化剂中,抗氧化剂会有选择的在铜或铜合金表面反应并生成一种有机覆膜,该覆膜具有优良的抗氧化性并能保持印制电路板的可焊性。其优点是抗氧化剂只附在铜面上,其它地方没有,保护时间久,长达一年以上。易与助焊剂结合,不含有害物质。

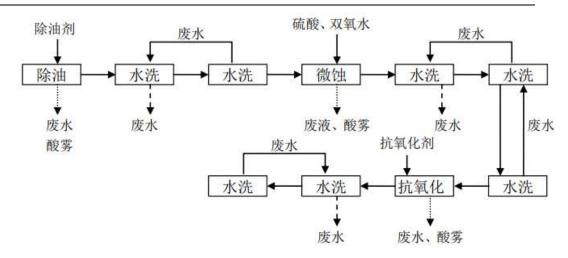


图 2-21 镀硬金工艺流程及产排污节点图

2.4.6.16 沉锡、沉金、沉银工艺

(1) 沉锡

沉锡工艺为线路板表面处理工艺,通过化学方法,在线路板表面产生锡面。

产污分析:一般清洗废水、蚀刻废液、硫酸雾、锡及其化合物。

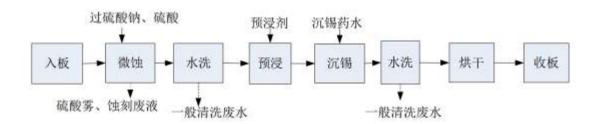


图 2-22 沉锡工艺流程及产排污节点图

(2) 沉金

沉金工艺为线路板表面处理工艺,通过化学方法,在线路板表面产生金面。

产污分析:水洗废水、氰化氢、硫酸雾、微蚀废液、含氰空瓶(HW49)。

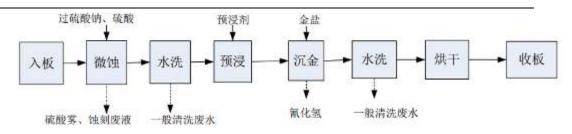


图 2-23 沉金工艺流程及产排污节点图

(3) 沉银

沉银工艺为线路板表面处理工艺,通过化学方法,在线路板表面产生银面。

产污分析:含银废水、水洗废水、酸性废气硫酸雾、硝酸雾、微蚀废液、含银废液。

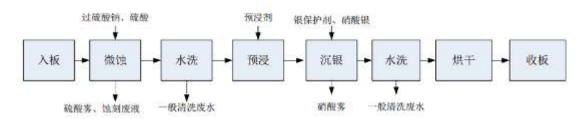


图 2-24 沉银工艺流程及产排污节点图

2.4.6.17 外形加工

线路板成型分为冲压成型和切割两步。冲压成型是在啤机的作用下,将铜板冲压成客户所需要的形状和尺寸,然后用切割机中,将板边切割出客户需要的V槽。

产污分析:切割产生粉尘。

2.4.6.18 退镀工艺

项目生产工艺中电镀工序中均需挂具退镀工序处理,其流程及产污节点如下图所示。挂具退镀是用硝酸将挂具上的铜金属退去,防止其污染电镀槽液。

项目退镀工艺的合理性: 电镀工艺中随着电镀工艺流程的进行, 作为镀件支撑体的挂具也被镀上相应的各种镀层。由于挂具要反复使用, 在镀完一批镀件进行下一批镀件电镀时必须对挂具上的镀层进行彻底退除, 否则污染镀液。

挂具采用铜材或不锈钢,根据建设单位提供的资料,项目挂具镀层的退镀工艺必须满足以下要求:一是镀层退除迅速完全,二是挂具本身不被腐蚀。挂具镀层的退镀与不合格零件的退镀一样,也可分为化学退镀与电化学退镀两种方法,由于挂具结构形状各异,根据其结构特点一般采用阳极氧化法退除挂具上的金属镀层。

化学退镀有硝酸退镀和用硝基化合物(防染盐)法两种。硝基化合物(防染盐) 法法需高温退除,时间长,效率低;而且若与剧毒物质氰化钠同时使用,操作 不当,危害也很严重。而电化学退镀法,普遍采用以硝酸铵或硝酸钾(钠)为主 盐进行退镀,但该法最大缺点是新、旧退镀液退镀速率一致性差,新溶液退镀 速率较快,使用一段时间后由于溶液中金属离子浓度上升,游离配位剂浓度相 对下降,退镀速率变慢。

项目采用硝酸退镀挂具,硝酸退镀无需高温,退除速率快,效率高,并且由于项目挂具由于挂具结构较复杂,大小不一,形状多样,硝酸退镀较干净,甚至对挂具一些凹坑、拐角处退镀也较干净。

产污分析:一般清洗废水、氮氧化物和退镀废液。

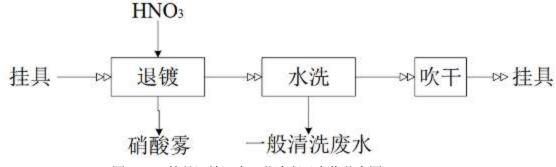


图 2-25 挂具退镀工序工艺流程及产物节点图

2.4.6.19 清洗、烘干、电测

对切割后的线路板进行清洗,去除表面的灰尘等杂质,将水烘干后用电测试机对线路板的每条线路进行导电测试,检查线路板是否合格。清洗过程会产生废水。

2.4.6.20 终检、包装、出货

对产品的外观进行检验,保证出给客户的产品为良品,经终检后包装出货。

2.4.7 污染防治措施

2.4.7.1 废水治理措施

① 1994年-2014年废水治理措施

在添利现有的废水站建设初期,各类废水基本按不同水质分类处理,但是添利公司属于老厂,废水站已经建成多年,废水站的管理存在一定的缺陷,同时车间生产废水经过多次的管道更换,导致少数排污管道混接,因为企业车间内废水排放情况比较混乱,车间分水达不到设计要求,各工序的废水混排,或者车间有分水但输送管道出现故障导致废水混排。

添利公司生产过程中有多种废水产生,其中沉铜水洗废水、蚀刻水洗废水、显影去膜废水、化学沉金水洗含氰废水经专设的前处理后方能排入综合废水处理站进行处理,含镍、退锡废水全部收集外委处理。已设置一套污水处理设施,设计处理能力为16000m³/d,2014年以前项目各类生产废水收集方式及去向、生产废水具体工艺流程如图。

具体处理工艺如下:

- (1) 铜粉废水: 通过物理沉淀和化学沉淀法沉淀分离铜粉;
- (2) 火山灰废水: 通过物理和化学沉淀法分离出火山灰;
- (3) 一般含Cu²⁺废水:通过加FeSO₄和Ca(OH)₂的化学沉淀法使Cu²⁺形成Cu(OH)₂沉淀,由于Fe(OH)₂的凝聚作用和CaSO₄的助凝作用,可使Cu(OH)₂迅速沉淀分离出来:
- (4)铜氨废水:铜氨废水中的Cu²+以[Cu(NH₃)]²+络合形式存在,通过间歇式的化学沉淀法,用FeSO₄或硫化钠。破铜氨络合键,再用NaOH调节pH,通入空气搅拌,并吹脱氨可使Cu²+和NH₃从溶液中分离出来;
- (5) P. T. H络合废水:采用高碱法,用Ca(OH)₂。调节pH为11~12,并通入空气搅拌,EDTA-Cu络合阴离子离解后,Cu²⁺形成Cu(OH)₂沉淀分离出

来;

- (6) 低浓度废水:采用化学沉淀法,加NaOH溶液,调节pH为8~9;
- (7)油墨废水:采用破乳上浮法(即酸析法)和化学混凝法相结合的方法进行处理,先往废水加酸,清浮渣,再加FeCl₃、NaOH混凝沉淀。

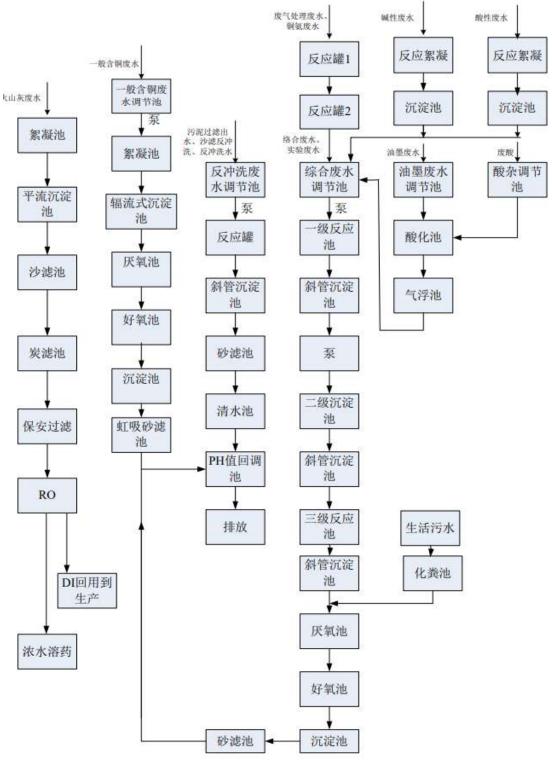


图 2-25 2014 年以前废水处理工艺流程图

② 2014 年至今废水处理措施

由于原管网老化且管线大多数为埋地管线,存在较为严重的混排现象,添利公司环评于2104年对广州添利电子科技有限公司水处理体系进行了一次改造升级,细化废水分类处理,优先回收有价值的含重金属的废水,同时将废水排水管道改为更能清晰排查的地上架空管线。以下按照技改分类说明各废水处理情况,除委外回收回收,其余均混合为综合废水做深度处理,厂区废液如下表,废液处理情况见以下9点。

表 2-6 废液分类表

序号	废水种类	主要来源	去向
1	酸性废液	沉金线、OSP、沉银线、沉铜线酸性除油, 磨板、外层板电、外层干菲林、外层 绿油、外层抗氧化等酸性废液	废酸池
2	碱性废液	黑化除油、棕化除油	废碱池
3	高锰酸盐废液	沉铜线	油墨调节池
4	化学铜废液	沉铜线	单独收集,委外处理或 定期加入络合废 水中
5	膨胀废液	沉铜线	络合废水预处理池
6	酸性蚀刻液	内层酸性蚀刻机	单独收集委外处理
7	碱性蚀刻液	内层碱性蚀刻机	单独收集委外处理
8	含锡废液	沉锡、退锡、喷锡工序等	单独收集委外处理
9	OSP 废液	沉铜线	络合废水预处理池
10	活化废液	沉铜线、沉金线	油墨酸析池
11	含镍废液	沉金线	单独收集委外处理
12	微蚀废液	内外层前处理线;沉铜线;棕化线;减铜 线;阻焊前处理线;沉金线;沉银 线;OSP	油墨酸析池
13	含银废液	沉银线	单独收集委外处理
14	含金废液	沉金线	单独收集委外处理
15	含磷废液	沉金钱磨板机除油废液	络合废水预处理池
16	硝酸废液	外层板电、外层图电炸棍废液	单独收集委外处理

(1) 含镍、含银废水

含镍废水、含银废水浓度较低,一般在线回收采用离子交换法,采用阳离

子大孔树脂,交换饱和后将树脂交由有资质的单位进行综合利用,处理达标的 废水进入一般含铜废水进一步处理,废槽液作为危险废物委外处理。添利公司 对于镍、银等一类污染物的在线回收处理工艺如下图。

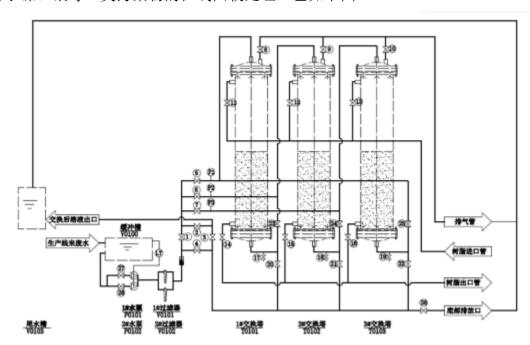


图 2-26 镍、银在线回收工艺流程图

(2) 火山灰废水

火山灰废水水量为1500m³/d,利用原有的"物化反应+沉淀+RO"处理系统进行,产生的浓液排入一般含铜废水调节池。

(3) 一般含铜废水

一般含铜废水水量为6500m³/d,主要污染物为Cu等,该类废水中不得含有络合物。其中的重金属Cu主要以离子态形式存在,经过"物化反应+沉淀"预处理后,废水中Cu离子含量为0.2~0.5mg/L。其他污染物如COD,进入生化系统进行进一步去除。其中,调节池、物化反应池、沉淀池均利用原有的。

(4) 络合废水

络合废水水量为2100m³/d, 主要污染物为Cu、氨氮、COD、总氮等。其中的Cu多为络合态的Cu, 需要进行破络,将其变成离子态的Cu, 再经过物化反应、沉淀,经预处理后,废水中Cu离子含量为0.5~1.0mg/L。其他污染物也达到了进生化系统的要求,进入到生化系统进行进一步处理。其中,调节池、物化反应池、沉淀池、中间水池均利用原有的;生化系统厌氧池1,利用旧生化系统

进行改造; 厌氧池2, 利用旧生化深沉池进行改造; 厌氧池3, 利用二次沉淀池进行改造。

(5) 油墨废水

油墨废水水量为1400m³/d,主要污染物为COD。该废水经过酸析预处理后,汇合络合废水进入络合废水处理系统。其中,调节池利用原有的;酸析反应池、酸析气浮池利用原有的酸析处理系统,修复气浮池,原气浮池为溶气气浮,改造为充气气浮。

(6) 铜氨废水

铜氨废水水量为500m³/d,主要污染物为Cu、氨氮、总氮。该废水先经过物化反应去除重金属Cu离子,然后通过超滤、脱氨成套设备去除废水中的氨氮、总氮等污染物。经过物化、超滤处理的废水,其中的重金属Cu含量较少,但是氨氮、总氮浓度高,需进行脱氨处理。在脱氨成套设备中进行一级脱氨处理,处理后废水达到后续处理设施的要求,汇合油墨废水、络合废水一起进入络合废水处理系统进行处理。其中,调节池利用原有的铜氨废水调节池,物化反应池利用原有的铜氨废水反应桶,新增2台提升泵,增设脱氨成套设备。

(7) 碱性废液

碱性废液主要来源于废碱、碱性除油工段,其水量为80m³/周,该废液经过简单物化反应、沉淀处理后汇合至络合废水处理系统进行处理。其中,调节池和物化反应池和沉淀池均利用原有。

(8) 酸性废液

酸性废液主要来源于酸性除油工段,水量为120m³/周。该废液利用原有的酸性废液调节池,经过提升泵提升至酸析反应池。

(9) 滤液废水

滤液废水主要来源于污泥脱水机的滤液,水量为1500m³/d,主要污染物为COD、氨氮。利用原有滤液废水处理系统进行处理。

污泥脱水机出来的滤液废水,由原有的滤液废水中间水池收集,经提升泵 直接提升至滤液废水处理系统。

为了对生产废水COD做深度处理,技改还新建了1套生化系统,主要处理由综合废水(由络合废水、油墨废水、铜氨废水等汇合而成)、一般含铜废

水、生活污水、滤液废水等经过预处理后的综合废水,主要污染物为COD、氨氮。经过生化系统的缺氧、好氧、MBR处理即"水解酸化+A-O"工艺后达到排放标准要求。

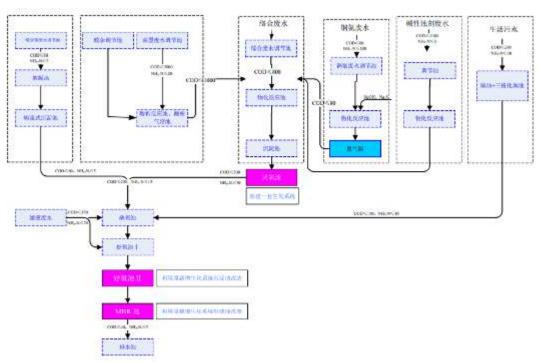


图 2-27 污水处理流程图 (COD、氨氮)

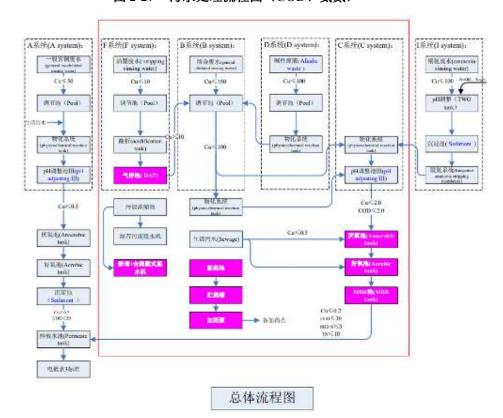


图 2-28 污水处理流程图 (Cu2+)

2.4.7.2 废气治理措施

① 1994年-1996年废气治理措施

1. 工艺废气

覆铜板车间在生产中会散发出有机溶剂丙酮、二甲基甲酰胺气体,车间废气排风机风量约10000m³/h,废气经水吸收后外排。吸收塔中反复吸收丙酮等废气的循环水定期排至厂内废水站处理,量约0.8吨/天。

线路板生产车间产生的酸性气体、氨气还有喷锡散发的松香气体,一期工程均采用有机玻璃盖板覆盖等封闭系统,或冷凝回流,或抽排气机抽排气,在吸收塔经水吸收后排放。而经吸收后的喷淋水进入废水站进行处理。对于车间粉尘,经集尘罩吸尘后进入除尘系统处理后排放。

2. 燃油废气

项目燃油废气主要来自五台柴油发电机和一台燃油锅炉。一期工程SO₂、NO_X、CO分别为23.38吨/年、64.31吨/年、59.92吨/年。燃油废气符合当时的废气排放标准,直接采用15m以上的高空排放,经大气扩散。

② 1996年-2012年废气治理措施

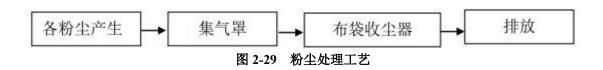
项目扩建后废气排放口较多,部分废气排放口的污染物排放浓度超标或接近超标。因此,在环评中提出了整改措施:

- (1)以无机物为主的酸性或碱性废气,采用碱或酸作为吸收剂配备相应的 净化塔进行喷淋处理,通过中和作用去除废气中的有害成分以达标排放。
- (2)以有机物为主的气体(油墨气体),项目采用活性炭吸附或柴油喷淋吸收塔。
- (3)以含油烟、NOx、SO2为主的发电机、锅炉、食堂油烟尾气,建议采用"TL型NaOH、碱性废水脱硫除尘装置",以保证达标排放。
- (4)以粉尘为主的气体,经独立袋式除尘器或中央除尘器集中处理后达标排放。

2005年-2007年技改后废气治理措施基本不变,仅增加了静电处理这一项处理工艺,因生产线改为封闭式,有机废气收集效率大大提高。

③ 2012年至今废气治理措施

除2014年环评对不符要求的排气筒进行加高外,其余治理设施自2012年未


发生重大改变, 具体情况见下描述。

建设单位根据污染物的类型、设备的布局综合设相应的废气处理措施并引到合理的位置排放,全厂共有63个各类生产性废气排放口,排放酸雾的排气筒,如5#、6#排放的废气是经碱喷淋处理来自干菲林工序排放的酸性废气,包括:硫酸雾和氯化氢;34#~36#排放的废气是经碱喷淋处理后来自三合一线生产工序产生的氮氧化物、硫酸雾、氯化氢及甲醛废气;排放有机废气的排气筒,如46-1#~47-2#是以水喷淋处理来自,喷涂和绿油焗炉的生产废气,废气主要成分为含易溶于水成分的VOCs;排放粉尘的排气筒,如1#、2#排放的废气中主要来自于开料工序产生的粉尘,经布袋除尘器除尘处理后排放。

1. 有组织工艺废气

(1) 粉尘

添利公司生产性粉尘主要来自于开料、钻孔和V型切割工序,现已对该类 粉尘设置了布袋除尘器。具体处理工艺如下:

粉尘由风管引至布袋收尘器收集后由10根27米排气筒、2根20米高排气筒、5根15米高的排气筒排放,粉尘经布袋收尘器处理后粉尘浓度及排放速率均达到广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

(2) 有机废气

绿油、白字印刷过程中使用油墨及清洁网版过程中使用洗网水时会挥发一定的有机废气,主要污染物为总VOCs。根据《关于珠江三角洲地区严格控制工业企业挥发性有机物(VOCs)排放的意见》的要求,加强各行业VOCs排放的控制,采取切实有效方法保障排放VOCs生产工序在固定车间内进行,监督有机废气排放企业安装有机废气回收净化设施。添利公司对油墨、白字工序设置密闭车间,并对整个车间进行抽风换气,对有机废气设置了4套水喷淋处理装置。油墨的主要成分是树脂、颜料、二氧化硅、及感光剂、二丙二醇甲醚、二乙二醇乙醚醋酸酯等易溶于水的有机物,溶剂采用DPM二丙二醇甲醚(易溶于

水),在绿油、白字工序会有部分挥发,其主要成分为总VOCs,收集有机废气的风机总风量为86000m³/h,处理后分别由27m高排气筒排放,根据监测结果,其排放浓度可达到《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)中第II时段排气筒标准。

(3) 抗氧化酸雾

项目设有抗氧化工序,该工序中的除油、微蚀、抗氧化过程中需使用硫酸,会产生少量硫酸雾,抗氧化设备为密闭的,经过37套"碱液喷淋装置"处理,达到《电镀污染物排放标准》(GB21900-2008)表5标准后由37根27m排气筒排放。

(4) 化学沉铜废气、电镀铜锡和化学沉镍金废气

项目在电镀车间设有1条沉铜线,沉铜工序产生废气:膨松、微蚀、除油、除胶、预浸过程使用硫酸产生的硫酸雾,沉铜过程使用含沉铜药水中含有甲醛,会产生的甲醛废气。沉铜设备为敞开式,目前,项目在膨松、微蚀、除油、除胶、预浸等槽上设置了槽边排风罩收集废气,类比同类型生产企业,废气收集率约为98%,收集后和电镀废气一起通过碱液喷淋塔装置处理后排放。项目在电镀车间设有1条电镀铜锡线和1条化学沉镍金线,镀前工序除油、微蚀、电镀和化学沉镍金过程中需使用硫酸会产生硫酸雾。电镀设备为敞开式,但为了控制空气质量,设置遮蔽门,防止废气无组织排放,目前,项目在除油、微蚀、电镀等槽上设置了槽边排风罩收集废气,类比同类型生产企业,废气收集率约为98%,收集后和沉铜废气一起通过碱液喷淋塔装置处理后排放。

工艺说明:酸雾废气旋经集气罩被引风机抽吸进入反应器中。在进入反应器之前在管道口预喷淋,然后在塔底部,气流激起水花,废气与水花及喷淋液进行反应,然后气流向上,经过(塑料)填料层,废气在其中填料的孔隙中折流通过,喷淋液也在填料的孔隙中折流通过,两者发生相互高速旋切掺混,实现了废气与吸收液进行大表面积的接触交换反应,其比表面积高于一般湿法技

术的十几倍甚至几十倍,然后在填料层上部的空间里又被从各个方向喷射出的大强度、高密度的喷淋液水洗。最后在出气口处采用填料层式气水分离器进行气和水雾的分离,净化气最终由高烟囱高空外排。喷淋水不断循环,自动补水与补药剂。项目化学沉铜废气、电镀铜锡和化学沉镍金废气经过处理后,硫酸雾和氯化氢达到《电镀污染物排放标准》(GB21900-2008)中表5大气污染排放限值,甲醛达到广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。该处理装置排气筒环评后改进高度为15m。

(5) 蚀刻废气

碱性蚀刻液中含有氨水,易分解产生少量氨气。项目对碱性蚀刻氨气设置 了4套酸液喷淋塔。碱性蚀刻线为密闭设备,类比同类型生产企业,其收集率可 达95%。蚀刻氨气废气治理流程如下:

图 2-31 蚀刻废气治理工艺流程

蚀刻氨气处理达到《恶臭污染物排放标准》(GB14554-93)二级现有二级标准后由高27m排放。

2. 无组织工艺废气

- (1)项目垂直沉铜线为敞开式,虽然设置了遮蔽门,但在产品进入和出工序时,有部分废气会无组织排放,类比同类型生产企业,其收集效率约为95%,建设单位拟通过改善车间岗位集气系统,使无组织排放的硫酸雾、甲醛、氨气等尽可能得到有效收集,确保无组织排放硫酸雾厂界浓度达到《工业企业厂界设计卫生标准》(TJ36-79)无组织排放标准。
- (2)项目板面电镀/图形电镀线为敞开式,虽然设置了遮蔽门,但在产品进入和出工序时,有部分废气会无组织排放,类比同类型生产企业,收集效率为98%,项目在设备四周增加集气罩,通过加强车间通风处理,确保无组织排放硫酸雾的厂界浓度达到《工业企业厂界设计卫生标准》(TJ36-79)无组织排放标准。

2.5周边企业及环境敏感目标

2.5.1 周边企业情况

周边企业主要以工业企业为主。根据收集的历史资料,相邻地块历史沿革如下:

- (1) 东侧: 地块东侧为时代印记住宅区(亨美庄)。
- (2) 南侧: 地块南侧原为广州上进化工有限公司,现在为广州九龙水质净化三厂。
 - (3) 西侧: 地块西侧为汽检场地、待建公路。
- (4) 北侧: 地块北侧偏西为曾为广州市金洋毛巾制造有限公司毛巾分厂, 现为广东省帆铭建设工程有限公司、广州潮荣汽检发展有限公司;北侧偏东现 为九佛街道文体广场。

2.5.2 敏感目标分布

厂区周边环境敏感点较小,1000米范围内以居住区和学校为主,敏感点情况见表2-8和图2-32。

序号	敏感目标名称	方位	与项目最近水 平距离(m)	敏感目标性质
1	红卫村	东南面	515	居民区
2	亨美村	东面	55	居民区
3	培贤学院	东面	345	学校
4	登塘村	北面	599	居民区
5	广州白云学院	北面	214	学校
6	华南灵长类研究开发中 心	东面	682	科研基地
7	凤尾村	南面	184	居民区

表 2-8 敏感目标分布列表

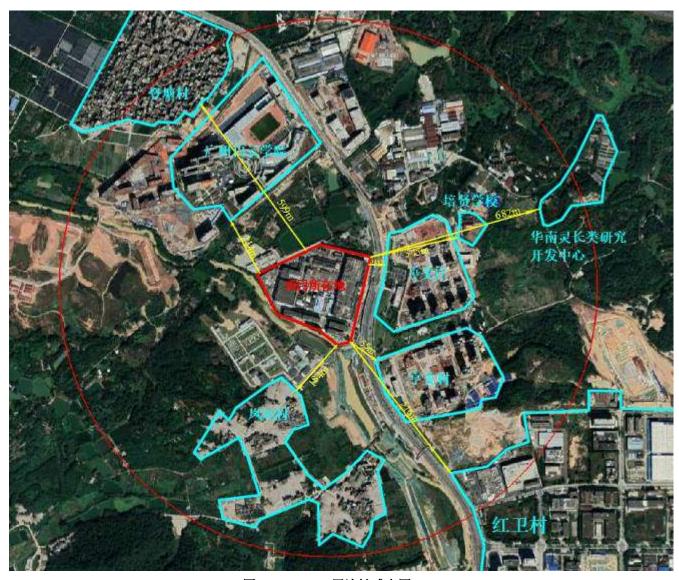


图 2-32 1000m 周边敏感点图

2.6历史环境调查与监测结果

根据资料,广州添利电子科技有限公司2018-2023年均在其厂区开展了土壤污染隐患排查及自行监测工作。根据这6年的自行监测检测报告,地块内地下水监测结果未超过《地下水质量标准》(GB14848-2017)IV类指标限值。土壤监测结果未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地的标准。具体情况如下:

2.6.1 土壤及地下水自行监测(2018年)

2018年11月广州添利电子科技有限公司委托广州德隆环境检测技术有限公

司开展2018年度的土壤及地下水自行监测,根据添利电子科技有限公司现状布置了以下12个点位,进行土壤及地下水自行监测,其中有包括10个土壤监测点、1个地下水监测点和1个土壤和地下水共用监测点。监测点位见图2-33,各点位检测因子见表2-9。检测结果显示,土壤监测结果均未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地的标准。地块内地下水监测结果均未超过《地下水质量标准》(GB14848-2017)Ⅲ类指标限值。

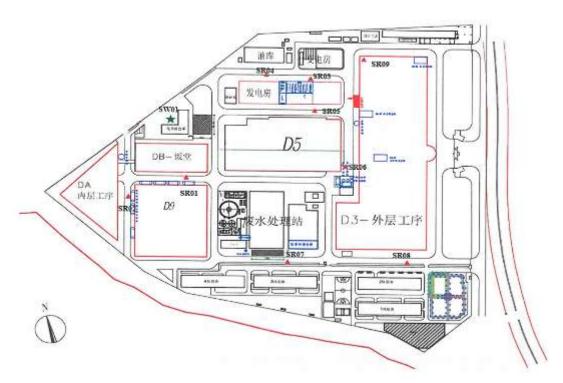


图 2-33 2018 年土壤及地下水自行监测点位图

表 2-9 2018年土壤及地下水自行监测项目

类别		采样点位及深/	度	监测项目
		SW01-1	0-0.5m	
	SW01	SW01-2	2~3m	
		SW01-3	4~6m	
		SR01-1	0~0.5m	
	SR01	SR01-2	2-3m	
		SR01-3	4-6m	
		SR02-1	0~0.5m	
	SR02	SR02-2	2-3m	
		SR02-3	4-6m	
		SR03-1	0~0.5m	
	SR03	SR03-2	2~3m	
		SR03-3	4-6m	**
上壤		SR04-1	0~0.5m	一 碎、锅、铬(六价)、锅、铅、汞、 镍、钴、钒、锡、铊、铍、氰化物、
	SR04	SR04-2	2~3m	氟化物、pH。
		SR04-3	4-6m	
		SR05-1	0-0.5m	
	SR05	SR05-2	2~3m	
		SR05-3	4-6m	
	SR06	SR06-1	0~0.5m	
		SR06-2	2-3m	
		SR06-3	46m	
		SR07-1	0~0.5m	
	SR07	SR07-2	2-3m	
		SR07-3	4-6m	
	SR08	SR08-1	0-0.5m	
		SR08-2	2~3m	
		SR08-3	4-6m	
1		SR09-1	0~0.5m	
	SR09	SR09-2	2~3m	
		SR09-3	4-6m	
1		SR10-1	0-0.5m	
	SR10	SR10-2	2~3m	
		SR10-3	4-6m	
F	SW01	SW01	15),27/102	pH 值、总硬度 (以 CaCO ₃ 计)、 溶解性总固体、氨氮、硝酸盐氮、 聚硝酸盐氮、高锰酸盐指数、大原 菌群、砷、汞、锡、铬、铁、锰、
水	SW02	SW02	-1	一個作、好、水、锅、粉、软、锰、挥发酚、总氰化物、氨化物、氨化物、铜、铜、镍、钴、钒、锑、铊、铍、甲基汞

2.6.2 土壤及地下水自行监测(2019年)

2020年2月广州添利电子科技有限公司委托广州市众璟环保工程技术有限公司开展2019年度的土壤及地下水自行监测,根据添利电子科技有限公司现状布置了以下12个点位,其中有包括10个土壤监测点和2个地下水监测点。其中土壤点位检测因子为《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中的表一45项和石油烃(C10-C40),地下水检测因子见表2-10,由广东杰信检验认证有限公司进行实验室分析。检测结果显示,土壤监测结果均未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地的标准。地块内地下水监测结果均未超过《地下水质量标准》(GB14848-2017)III类指标限值。

数量(组) 钻孔编号 样品类型 检测项目 pH、总硬度、溶解性总固体、硫酸盐、 氯化物、阴离子表面活性剂、总大肠菌 S3/GW1 1 地下水 群、挥发性酚类、氨氮、耗氧量、硝酸 盐、亚硝酸盐、氟化物、GB36600-2018 表一重金属7项、钴、铊、铁、锰、 S6/GW2 1 地下水 锑、铍和氰化物

表 2-10 2019 年地下水自行监测项目

2.6.3 土壤及地下水自行监测 (2020年)

2020年12月广州添利电子科技有限公司委托广东安纳检测技术有限公司开展2020年度的土壤及地下水自行监测,根据添利电子科技有限公司现状布置了以下7个点位,进行土壤及地下水自行监测,其中有包括4个土壤监测点和3个土壤和地下水共同监测点。监测点位见图2.34,地下水点位检测因子见表2-11,土壤点位检测因子见表2-12。检测结果显示,土壤监测结果均未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地的标准。地块内地下水监测结果均未超过《地下水质量标准》(GB14848-2017)III类指标限值。

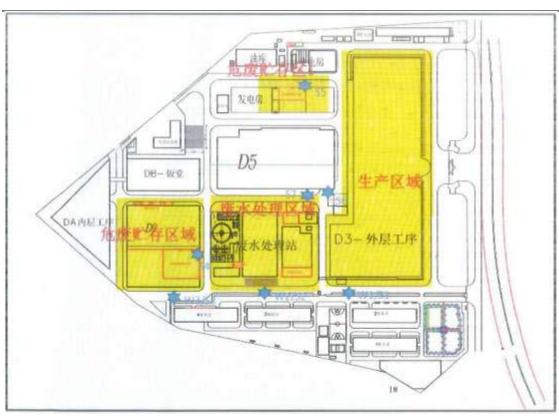


图 2.34 2020 年土壤及地下水自行监测点位图

表 2-11 2020 年地下水自行监测项目

类别	控別 采样点位及深度		样品状态描述	检测项目	采样人员	
	WI	水面下 0.5m	浅黄色、无异味、无肉 服可见物	pH 值、氰化物、总汞、砷、镉、铜、 镍、铅、铬、锑、铍、铊。烷基汞(甲 基汞、乙基汞)	梁字杰、 孙 超	
地下水	W2	水面下 0.5m	浅黄色、无异味、无肉 服可见物	pH 值、氰化物、总汞、砷、镉、铜、镍、铅、铬、锑、铍、铊、烷基汞(甲基汞、乙基汞)	梁字杰、 孙 超	
	W3	水面下 0.5m	浅黄色、无异味、无肉 眼可见物	pH 值、氧化物、总汞、砷、镉、铜、镍、铅、铬、锑、铍、铊、烷基汞(甲基汞、乙基汞)	梁宇杰、 孙 超	

备注:无。

类别	米	样点位及治	架度	样品状态描述	检测项目	采样人员	
		S1/W1-1	0~0.5m	灰褐色、砂土、干	-1-75 and (1-60m		
	G1 7711	S1/W1-2	2.0~2.5m	橙黄色、砂壤土、潮	水分、pH值、氰化物、 锑、铍、铊、总汞、总	朱寅日、	
	S1/W1	S1/W1-3	2.9~3.6m	灰棕色、砂土、湿	砷、铅、镉、镍、铜、	刘文锋、 黄泽钦	
		S1/W1-4	4.0~4.5m	红棕色、轻壤土、湿	六价铬		
	170	S2/W2-1	0~0.5m	灰褐色、砂土、潮			
土壌	00.000	S2/W2-2	2.0~2.5m	灰褐色、砂土、潮	水分、pH值、氰化物、 锑、铍、铊、总汞、总	朱寅日、	
	S2/W2	S2/W2-3	3.7~4.2m	灰棕色、砂土、湿	砷、铅、镉、镍、铜、	刘文锋、 黄泽钦	
		S2/W2-4	5.5~6.0m	暗灰色、粘土、湿	六价铬		
FU	S3/W3	S3/W3-1	0~0.5m	浅橙色、砂土、潮	水分、pH值、氰化物、 锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	朱寅日、	
		S3/W3-2	2.0~2.5m	橙黄色、轻壤土、湿		刘文锋、	
		S3/W3-3	3.3~3.8m	暗灰色、重壤土、湿	六价铬	黄泽钦	
	S4	S4-1	0~0.5m	灰褐色、砂土、干	水分、pH 值、氧化物、	朱寅日、	
		S4-2	2.0~2.5m	橙黄色、轻壤土、湿	锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	刘文锋、	
		S4-3	4.0~4.5m	灰棕色、中壤土、湿	六价铬	黄泽钦	
		S5-1	0~0.5m	褐色、砂土、潮	水分、pH值、氰化物、 锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	朱寅日、	
	S5	S5-2	2.0~2.5m	灰棕色、轻壤土、湿		刘文锋、	
±		S5-3	4.0~4.5m	灰棕色、粘土、极潮	六价铬	黄泽钦	
壤		S6-1	0~0.5m	灰褐色、砂土、潮	水分、pH值、氧化物、	朱寅日、	
	S6	S6-2	1.0~1.5m	灰褐色、砂土、湿	锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	刘文锋、	
		S6-3	2.0-2.5m	暗灰色、砂土、湿	六价铬	黄泽钦	
		S7-1	0~0.5m	橙黄色、轻壤土、潮	水分、pH 值、氰化物、	朱寅日、	
	S7	S7-2	2.0~2.7m	灰棕色、砂土、湿	锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	刘文锋、	
		S7-3	3.0~3.5m	浅黄色、粘土、湿	六价铬	黄泽钦	

2.6.5 土壤及地下水自行监测 (2021年)

2021年广州添利电子科技有限公司委托广东增源检测技术有限公司开展土壤和地下水采样检测工作。根据添利电子科技有限公司现状布置了以下7个点位,其中有包括5个土壤监测点和2个土壤和地下水共用监测点。各点位检测因子见表2-13。检测结果显示,地块内地下水监测结果均未超过《地下水质量标准》(GB14848-2017)IV类指标限值。土壤监测结果均未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地的标准。

图 2-35 2021 年监测点位图

表 2-13 2021 年土壤和地下水自行检测项目

检测类别	委托格	金洲				
	样品 类型	采样位置	检测参数	天数	頻次	点位数
	地下水	W1、W2	pH 值、总硬度、溶解性 总固体、硫酸盐、氯化物、 阴离子表面活性剂、挥发 酚、耗氧量、硝酸盐氮、 氟化物、铜、镍、钴、亚 硝酸盐氮、氨氮、汞、镅、 砷、铅、六价铬、总大肠 菌群、铁、锰、氰化物、 锑、铍	1	1	2
检测内容 及项目	土壤	S1 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), S2 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), S3 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), S4 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), S5 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), S6 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), S7 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m)	砷、镉、六价铬、铜、铅、汞、镍、四氯化碳、氯仿、氮甲烷、1,1-二氯乙烷、1,2-二氯乙烯、 反式-1,2-二氯乙烯、 反式-1,2-二氯乙烯、 一氯乙烷、1,1,2-四氯乙烷、四氯乙烷、1,1,2-三氯乙烷、四氯乙烷、1,1,2-三氯乙烷、三氯乙烷、1,2,3-三氯丙烷、氯乙烯、苯、氮苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间,对-二甲苯	1	1	28

检测类别	委托	金洲				
检测内容 及项目	土壤	\$1 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), \$2 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), \$3 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), \$4 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), \$5 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), \$6 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m), \$7 (0-0.5m, 0.5-1.5m, 1.5-3.0m, 3.0-6.0m)	邻二甲苯、硝基苯、苯胺、 2-氯苯酚、苯并(a) 蒽、 苯并(a) 芘、苯并(b) 荧蒽、苯并(k) 荧蒽、 窟、二苯并(a,h) 蒽、茚 并[1,2,3-cd]芘、萘、石油 烃(C ₁₀ -C ₄₀)	1	1	28
样品来源	采样					

备注: 1.检测结果的不确定度: 无; 2.偏离标准方法情况: 无; 3.非标方法使用情况: 无; 4."ND"表示该结果小于检测方法最低检出限。

		S4-1	0~0.5m	灰褐色、砂土、干	水分、pH值、氰化物、	朱寅日、
	S4	S4-2	2.0~2.5m	橙黄色、轻壤土、湿	锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	刘文锋、
		S4-3	4.0~4.5m	灰棕色、中壤土、湿	六价铬	黄泽钦
		S5-1	0~0.5m	褐色、砂土、潮	水分、pH值、氰化物、	朱寅日、
	S5	S5-2	2.0~2.5m	灰棕色、轻壤土、湿	一 锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	刘文锋、黄泽钦
±		S5-3	4.0~4.5m	灰棕色、粘土、极潮	六价铬	
壤		S6-1	0~0.5m	灰褐色、砂土、潮	水分、pH值、氧化物、	朱寅日、 刘文锋、
	S6	S6-2	1.0~1.5m	灰褐色、砂土、湿	锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	
		S6-3	2.0-2.5m	暗灰色、砂土、湿	六价铬	黄泽钦
		S7-1	0~0.5m	橙黄色、轻壤土、潮	水分、pH 值、氰化物、	朱寅日、
	S7	S7-2	2.0~2.7m	灰棕色、砂土、湿	锑、铍、铊、总汞、总 砷、铅、镉、镍、铜、	刘文锋、
		S7-3	3.0~3.5m	浅黄色、粘土、湿	六价铬	黄泽钦

备注:无。

2.6.6 土壤及地下水自行监测(2022年)

2022年10月,广州添利电子科技有限公司委托广州市中德环境技术研究院有限公司开展土壤和地下水采样检测工作,地块内外布设14个点位(含1个对照点),共采集35个基础土壤样品和5个地下水基础样品进行检测。本次监测共采集36个土壤样品,并进行pH、水分、GB36600-2018表一45项、锌、氰化物、氟化物、丙酮、异佛尔酮、石油烃(C10~C40)和多环芳烃(表外8项)的检测;在5个地下水中各采集1个地下水样品,均进行了色度、嗅和味、pH、浑浊度、肉眼可见物、总硬度、溶解性总固体、硫酸盐、氯化物、铁、铜、锌、阴离子表面活性剂、耗氧量、钠、亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、六价铬、铅、三氯甲烷、四氯化碳、苯、甲苯、镍、石油烃(C10-C40)、乙苯、二甲苯、苯乙烯、多环芳烃(16项)、氯化烃(18项)、丙酮和异佛尔酮的检测。

对于35个土壤样品, 汞、砷、镉、铜、铅、镍、锌、氰化物、氟化物、丙酮、异佛尔酮和石油烃(C10~C40)均有检出, 但检出值均未超过GB36600-2018中的第二类用地筛选值; 挥发性有机物(27项)中仅四氯乙烯和顺式-1,2-二氯乙烯有检出, 但检出值均未超过GB36600-2018中的第二类用地筛选值; 半挥发性有机物(19项, 含多环芳烃非表一8项)中仅苯并(a)蒽、萘和菌有检出, 但检出值均未超过GB36600-2018中的第二类用地筛选值。

对于5个地下水样品,所有重金属、无机物以及石油烃(C10~C40)均有不同程度的检出,但均未超过《地下水质量标准》(GB/T14848-2017)中相应的III 类地下水标准限值;挥发性有机物24项中仅氯仿、顺-1,2-二氯乙烯和四氯乙烯有检出,它们的最大值均未超过《地下水质量标准》(GB/T14848-2017)中相应的III类地下水标准限值;丙酮、异佛尔酮和多环芳烃(16项)均未检出。

图 2-36 2022 年土壤及地下水自行监测点位图

表 2-14 2022 年土壤样品检测结果分析表

点位	数量 (孔)	样品数量	孔深 (m)	布设原因	检测项目	备注
S1	1	3	原排水	监测 D3 生产区对土壤的影		考虑地铁因素,采样
S2	1	3	管以下	响		只到排水管以下
S3	1	3	6.0	监测废水处理站对土壤的影 响		-
S4	1	3	6.0	监测 D3 生产区对土壤的影响	pH、水分、GB36600-2018表一45项 (重金属7项,挥发性有机物27项,半	-
S5	1	3	6.0	监测废水处理站对土壤的影 响	挥发性有机物11项)、铅、锌、氰化物、氟化物、石油烃(C10-C40)、丙酮、异佛尔酮和多环芳烃(表外8	-
S6/GW1	1	3	5.0	监测 D9 生产区对土壤的影响	项)。	-
S7	1	1	表层	监测A生产区对土壤的影响		-
S8/GW2	1	3	4.0	监测化学品仓库对土壤的影 响		-
S9	1	3	4.0	监测原油库对土壤的影响	pH、水分、GB36600-2018 表一 45 项 (重金属 7 项,挥发性有机物 27 项, 半挥发性有机物 11 项)、石油烃 (C10-C40)	-
S10	1	3	5.0	监测原发电房和锅炉对土壤 的影响	pH、水分、GB36600-2018 表一 45 项 (重金属 7 项,挥发性有机物 27 项, 半挥发性有机物 11 项)、多环芳烃 (表外 8 项)	-
S11/GW3	1	3	5.0	监测危废贮存区对土壤的影 响	pH、水分、GB36600-2018 表一 45 项 (重金属 7 项,挥发性有机物 27 项,	-

点位	数量(孔)	样品数量	孔深 (m)	布设原因	检测项目	备注
S12	1	3	5.0	监测 D3 生产区对土壤的影响	半挥发性有机物 11 项)、铅、锌、氰化物、氟化物、石油烃(C10-C40)、	-
S13	1	1	表层	监测生化处理区对土壤的影 响	丙酮、异佛尔酮和多环芳烃(表外 8 项)。	-
对照点	1	1	0.5	对照		-

表 2-15 2022 年地下水样品检测结果分析表

钻孔编号	采样深度(m)	数量(组)	样品类型	检测项目	备注
原水井1	水面以下 0.5m	1	水样		原井 1
原水井 2	水面以下 0.5m	1	水样	地下水质量标准(GB/T14848-2017)表一除微生物放射	原井 2
GW1	水面以下 0.5m	1	水样	性指标外所有项目,镍、石油烃(C10-C40)、乙苯、 二甲苯、苯乙烯、多环芳烃(16项)、氯化烃(18	与 S6 重合
GW2	水面以下 0.5m	1	水样	项)、丙酮、异佛尔酮	与 S8 重合
GW3	水面以下 0.5m	1	水样		与 S11 重合

2.6.7 土壤及地下水自行监测 (2023 年)

2023年,广州添利电子科技有限公司委托广州市中德环境技术研究院有限公司开展土壤和地下水采样检测工作,布置了以下11个点位,其中有包括11个土壤监测点和5个土壤和地下水共用监测点。

检测结果显示,地块内地下水监测结果均未超过《地下水质量标准》(GB14848-2017)IV类指标限值。土壤监测结果均未超过《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地的标准。

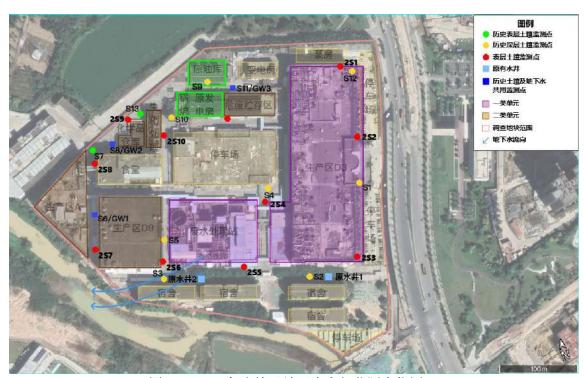


图 2-37 2023 年土壤及地下水自行监测点位图

表 2-16 2023 年土壤点位信息表

点位	数量 (孔)	样品数量	孔深 (m)	布设原因	检测项目	备注
S1 S2	1	3	原排水管以下	监测 D3 生产区对土壤的影响	pH、水分、土壤环境质量建设用地土	考虑地铁因素,采样 只到排水管以下
S3	1	3	6.0	监测废水处理站对土壤的影响	壤污染风险管控标准(试行)》 (GB36600-2018)表一所有项目(重金 属7项,挥发性有机物27项,半挥发 性有机物11项)、铅、锌、氰化物、 氟化物、石油烃(C10-C40)、丙 酮、异佛尔酮和多环芳烃(表外8 项)。	-
S4 S5	1	3	6.0	监测 D3 生产区对土壤的影响 监测废水处理站对土壤的影响		-
S6/ GW1	1	3	5.0	监测 D9 生产区对土壤的影响		-
S7 S8/	1	3	表层 4.0	监测 A 生产区对土壤的影响 监测化学品仓库对土壤的影响	- OK / 0	-
S9	1	3	4.0	监测原油库对土壤的影响	pH、水分、土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表一所有项目(重金属7项,挥发性有机物27项,半挥发性有机物11项)、石油烃(C10-C40)	-
S10	1	3	5.0	监测原发电房和锅炉对土壤的影响	pH、水分、土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表一所有项目(重金属7项,挥发性有机物27项,半挥发性有机物11项)、多环芳烃(表外8项)	-

点位	数量 (孔)	样品数量	孔深 (m)	布设原因	检测项目	备注
S11/ GW3	1	3	5.0	监测危废贮存区对土壤的影响	pH、水分、土壤环境质量建设用地土 壤污染风险管控标准(试行)》	-
S12	1	3	5.0	监测 D3 生产区对土壤的影响	(GB36600-2018)表一所有项目(重金	-
S13	1	1	表层	监测生化处理区对土壤的影响	属 7 项,挥发性有机物 27 项,半挥发性有机物 11 项)、铅、锌、氰化	-
2S1	1	1	表层	物、氟化物、石油烃(C10-C40)、丙 -		-
2S2	1	1	表层	收测 D 2 化立反动 L 海萸以应	酮、异佛尔酮和多环芳烃(表外 8 项)。	-
2S3	1	1	表层	│ 监测 D3 生产区对土壤的影响	· · · · · · · · · · · · · · · · · · ·	-
2S4	1	1	表层			-
2S5	1	1	表层			-
2 S6	1	1	表层	监测废水处理站对土壤的影响		-
2S7	1	1	表层	监测 D9 生产区对土壤的影响		-
2S8	1	1	表层	监测A生产区对土壤的影响		-
2S9	1	1	表层	监测化学品仓库对土壤的影响		-
2S10	1	1	表层	监测生化处理区对土壤的影响		-
2S11	1	1	表层	监测危废贮存区对土壤的影响		-
对 照点	1	1	0.5	对照		-

注:

重金属(镍、六价铬、镉、铅、砷、汞和铜);

VOCs(四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯

苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯);

表 2-17 2023 年地下水点位信息表

钻孔编号	采样深度(m)	数量(组)	样品类型	检测项目	备注
原水井1	水面以下 0.5m	1	水样	地下水质量标准(GB/T14848-2017)表一除微生物放	原井 1
原水井 2	水面以下 0.5m	1	水样		原井 2
GW1	水面以下 0.5m	1	水样	射性指标外所有项目,镍、锌、石油烃(C10-C40)、乙苯、二甲苯、苯乙烯、多环芳烃(16	与 S6 重合
GW2	水面以下 0.5m	1	水样	项)、氯化烃(18项)、丙酮、异佛尔酮	与 S8 重合
GW3	水面以下 0.5m	1	水样		与 S11 重合

3 自行监测方案

3.1重点设施及疑似污染区域识别方法

3.1.1 液体储存区

3.1.1.1 储罐类储存设施

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染 隐患排查与整改技术要点"列举的储罐类储存设施土壤污染预防设施与措施推荐 性组合要求,各不同储罐类要求如下:

表 3-1 储罐类储存设施土壤污染预防与措施推荐性组合

表 3-1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y				
组合	土壤污染预防设施功能	土壤污染预防措施		
一、地下储罐				
1 •	单层钢制储罐 阴极保护系统 地下水或者土壤气监测井	● 定期开展阴极保护有效性检查;● 定期开展地下水或者土壤气监测		
2	单层耐腐蚀非金属材质储罐 地下水或者土壤气监测井	● 定期开展地下水或者土壤气监测		
3	双层储罐 泄漏检测设施	● 定期检查泄漏检测设施,确保正常运行		
4	位于阻隔设施(如水泥池等)内 的单层储罐 阻隔设施内加装泄漏检测设施	● 定期检查泄漏检测设施,确保正常运行		
二、接地储罐				
1	单层钢制储罐 阴极保护系统 泄漏检测设施 普通阻隔设施	● 定期开展阴极保护有效性检查● 定期检查泄漏检测设施,确保正常运行● 日常维护(如及时解决泄漏问题,及时清理泄漏的污染物,下同)		
2	单层耐腐蚀非金属材质储罐 泄漏检测设施 普通阻隔设施	● 定期检查泄漏检测设施,确保正常运行● 日常维护		
3	定期检查泄漏检测设施,确保正 常运行 日常维护	● 定期检查泄漏检测设施,确保正常运行● 日常维护		
4	防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水 渗漏、流失的液体能得到有效收 集并定期清理	定期开展防渗效果检查(如物探检测、 注水试验检测等,下同)定期采用专业设备开展罐体专项检查日常维护		
三、离地储罐				

组合	土壤污染预防设施功能	土壤污染预防措施
1	● 单层储罐● 普通阻隔设施	● 目视检查外壁是否有泄漏迹象 ● 有效应对泄漏事件(包括完善工作程 序,定期开展巡查、检修以预防泄漏 事件发生;明确责任人员,开展人员 培训;保持充足事故应急物资,确保 能及时处理泄漏或者泄漏隐患;处理 受污染的土壤等,下同)
2	● 单层储罐 ● 防滴漏设施	● 定期清空防滴漏设施● 目视检查外壁是否有泄漏迹象● 有效应对泄漏事件
3	 双层储罐 泄漏检测设施	 定期采用专业设备开展罐体专项检查 日常目视检查(如按操作规程或者交班时,对是否存在泄漏、渗漏等情况进行快速检查,下同) 日常维护
4	● 防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水● 渗漏、流失的液体能得到有效收集并定期清理	● 定期开展防渗效果检查● 日常维护

企业涉及储罐主要设于 D3 生产区和危废贮存区 D9 (原 D9 生产区) 西面,储罐均为地上储罐,储罐材质是玻璃钢和 PE 材质。

储罐区设有防风防雨大棚,设有环保标识、当心有毒标识和环境管理制度等,储罐区设置了围堰,废蚀刻液围堰高 1.0 米,面积为 76 平方米,有效容积为 76 立方米。单个蚀刻液槽最大储存量为 35 吨,盐酸储罐围堰高 1.0 米,面积为约 42 平方米,有效容积为 42 立方米。单个储罐容积约 30 吨。因此,围堰的容积能容纳储罐内液体完全泄漏的体积,尺寸满足要求,但需要进一步加强围堰地面防腐措施,防止危险化学品泄漏到地下水。

综上所述,供药区,储罐区溶液暂存处均有进行保护和防渗处理,防渗阻隔系统且能防止雨水进入,渗漏、流失的液体也能得到有效收集;但储罐没有泄漏检测设施,对土壤和地下水的污染风险不能排除,需定期开展防渗效果检查。

含镍废液贮存罐↑

3.1.1.2 池体类储存设施

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染 隐患排查与整改技术要点"列举的池体类储存设施土壤污染预防设施与措施推荐 性组合要求,各不同池体要求如下。

	1011 Schill Seven W. (4) NATURA (4) PART II				
组合	土壤污染预防设施功能	土壤污染预防措施			
一、地下	或半地下储存池				
1	防渗池体 泄漏检测设施 定期检查泄漏检测设施,确保正常运行 日常目视检查 日常维护				
2	防渗池体	定期检查防渗、密封效果 日常目视检查 日常维护			
二、离地	二、离地储存池				
1	防渗池体 防渗阻隔系统,且能防止雨水进入, 或者及时有效排出雨水渗漏、流失的 液体能得到有效收集并定期清理	定期开展防渗效果检查 日常维护			

表 3-2 池体类储存设施土壤污染预防与措施推荐性组合

根据现场踏勘对厂区内重点场所和重点设施设备的识别,结合《重点监管单位土壤污染隐患排查指南(试行)》中池体类储存设施土壤污染预防设施与措施推荐性组合要求,对企业厂区池体储存设施进行逐一核查。

企业废水处理站有部分半埋地式池体,其他区域包括生化处理区均为离地 池体,池体均做了防腐、防渗措施。

上述池体,虽使用时间较长,但绝大部分为地上池体,隐患较低,若发生泄漏也能及时发现。半地下储存池、离地储存池等,造成土壤污染风险较大,使用时间长可能导致池体老化、破损、裂缝造成的泄漏、渗漏等;池体若满溢也会导致的土壤污染。一般而言,地下或半地下储存池具有隐蔽性,土壤污染隐患更高。要定期检查泄漏检测设施,确保正常运行。

3.1.2 散装液体转运与厂内运输

3.1.2.1 散装液体物料装卸

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染

隐患排查与整改技术要点"列举的液体物料装卸平台土壤污染预防设施与措施推 荐性组合要求,各不同装卸形式要求如下。

表 3-1 液体物料装卸平台土壤污染预防与措施推荐性组合

组合	土壤污染预防设施功能	土壤污染预防措施
一、顶部	装卸	
1	 普通阻隔设施,且能防止雨水进入,或者及时有效排出雨水 出料口放置处底部设置防滴漏设施 溢流保护装置 渗漏、流失的液体能得到有效收集并定期清理 	定期清空防滴漏设施日常目视检查设置清晰的灌注和抽出说明标识牌有效应对泄漏事件
2	防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水溢流保护装置渗漏、流失的液体能得到有效收集并定期清理	 定期防渗效果检查 设置清晰的灌注和抽出说明标识牌 日常维护
二、底部	装卸	
1	 普通阻隔设施,且能防止雨水进入,或者及时有效排出雨水 溢流保护装置 渗漏、流失的液体能得到有效收集并定期清理 	自动化控制或者由熟练工操作设置清晰的灌注和抽出说明标识牌, 特别注意输送软管与装载车连接处有效应对泄漏事件
2	 普通阻隔设施,且能防止雨水进入,或者及时有效排出雨水 正压密闭装卸系统;或者在每个连接点(处)均设置防滴漏设施 溢流保护装置 渗漏、流失的液体能得到有效收集并定期清理 	 定期清空防滴漏设施 日常目视检查 设置清晰的灌注和抽出说明标识牌, 特别注意输送软管与装载车连接处 有效应对泄漏事件
3	 防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水 溢流保护装置 渗漏、流失的液体能得到有效收集并定期清理 	定期开展防渗效果检查设置清晰的灌注和抽出说明标识牌, 特别注意输送软管与装载车连接处日常维护

根据现场踏勘对厂区内重点场所和重点设施设备的识别,结合《重点监管单位土壤污染隐患排查指南(试行)》中液体物料装卸平台土壤污染预防设施

与措施推荐性组合要求,对企业厂区液体物料装卸平台进行逐一核查。

经现场排查,企业涉及散装液体物料装卸的主要为厂区各类储罐中的液体物料。储罐区设有环保标识和围堰,有专人检查和维护。预防污染和措施较为完善,无污染隐患。

3.1.2.2 管道运输

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染 隐患排查与整改技术要点"列举的管道运输土壤污染预防设施与措施推荐性组合 要求,各不同运输管道类型要求如下。

土壤污染预防设施功能 组合 土壤污染预防措施 一、地下管道 定期检测管道渗漏情况(内检测、外 检测及其他专项检测 ● 单层管道 1 根据管道检测结果,制定并落实管道 维护方案日常目视检查 双层管道 定期检查泄漏检测设施,确保正常运 泄漏检测设施 行 二、地上管道 定期检测管道渗漏情况 根据管道检测结果,制定并落实管道 注意管道附件处的渗漏、泄漏 1 维护方案日常目视检查 有效应对泄漏事件

表 3-2 管道运输土壤污染预防与措施推荐性组合

根据现场踏勘对厂区内重点场所和重点设施设备的识别,结合《重点监管单位土壤污染隐患排查指南(试行)》中管道运输土壤污染预防设施与措施推荐性组合要求,对管道运输进行逐一核查。

广州市添利电子科技有限公司存在较多的管道运输,废水排水管已于2014年改为地上架空管道,管道无泄漏情况,但地上管道下方区域有少数裂开或无硬化情况,若发生泄漏,对土壤存在一定隐患。定期检查管道渗漏情况,根据管道检测结果,制定并落实管道维护方案日常目视检查,同时关注管道区域地面硬化防渗情况以有效应对泄漏事件。

图 3-2 架空管道

3.1.2.3 传输泵

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染 隐患排查与整改技术要点"列举的传输泵土壤污染预防设施与措施推荐性组合要 求,各不同类型传输泵要求如下。

表 3-3 传输泵土壤污染预防与措施推荐性组合

组合	土壤污染预防设施功能	土壤污染预防措施
一、密封	效果较好的泵	
1	● 普通阻隔设施● 进料端安装关闭控制阀门	● 制定并落实泵检修方案● 日常目视检查● 有效应对泄漏事件
2	对整个泵体或者关键部件设置 防滴漏设施进料端安装关闭控制阀门	定期清空防滴漏设施制定并实施检修方案日常目视检查日常维护
3	 防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水 进料端安装关闭控制阀门 渗漏、流失的液体能得到有效收集并定期清理 	定期开展防渗效果检查日常目视检查日常维护
二、密封	效果一般的泵	
1	对整个泵体或者关键部件设置 防滴漏设施进料端安装关闭控制阀门	定期清空防滴漏设施制定并落实泵检修方案日常目视检查日常维护
2	 防渗阻隔系统,且能防止雨水 进入,或者及时有效排出雨水 进料端安装关闭控制阀门 渗漏、流失的液体能得到有效收集并定期清理 	 定期开展防渗效果检查 日常目视检查 日常维护
三、无泄	漏离心泵	
1	● 进料端安装关闭控制阀门	● 日常目视检查● 日常维护

根据现场踏勘对厂区内重点场所和重点设施设备的识别,结合《重点监管单位土壤污染隐患排查指南(试行)》中传输泵土壤污染预防设施与措施推荐性组合要求,对传输泵进行逐一核查。

企业内存在多处传输泵,其中用于运输液体存在驱动轴或者配件的密封处 泄漏的风险,所有的传输泵,包括向应急水泵等存在润滑油泄漏或者满溢的风 险,应定期检查,定期清空防滴漏设施并落实泵检修方案。

3.1.2.4 包装货物储存和运输

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染 隐患排查与整改技术要点"列举的包装货物储存和暂存土壤污染预防设施与措施 推荐性组合要求,各不同类型包装货物要求如下。

表 3-4 包装货物储存和暂存土壤污染预防设施与措施推荐性组合

组合	土壤污染预防设施功能	土壤污染预防措施			
一、包装	一、包装货物为固态物质				
1	● 普通阻隔设施 ● 货物采用合适的包装(适用于 相关货物的储存,下同)	● 日常目视检查● 有效应对泄漏事件			
2	● 防渗阻隔系统,且能防止雨水 进入,或者及时有效排出雨 水	● 定期开展防渗效果检查● 日常目视检查● 日常维护			
二、包装	装货物为液态或者黏性物质				
1	● 普通阻隔设施 ● 货物采用合适的包装	● 日常目视检查● 有效应对泄漏事件			
2	● 防滴漏设施 ● 货物采用合适的包装	● 定期清空防滴漏设施● 目视检查			
3	● 防渗阻隔系统,且能防止雨水 进入,或者及时有效排出雨 水● 渗漏、流失的液体能得到有效 收集并定期清理	定期开展防渗效果检查日常目视检查日常维护			

根据现场踏勘对厂区内重点场所和重点设施设备的识别,结合《重点监管单位土壤污染隐患排查指南(试行)》中包装货物储存和暂存土壤污染预防设施与措施推荐性组合要求,对包装货物进行逐一核查。

添利公司原辅料均有原厂防渗防腐包装运输至化学品仓分类分区储存。

添利公司已对废水处理污泥用包装袋装,并堆放在地面,由于污泥含有水份,其水质与废水水质相同,如堆放时间较长,则污泥中水份会渗漏,并进入地下,污染地下水;对于显影废液、去膜废液、微蚀、抗氧化废液、沉铜废液、蚀刻废液、电镀废液等危险废物,建设单位采用专用桶装,一般不会泄漏,若发生泄漏时,各种液态废液会渗入地下,对地下水水质产生一定的污染。泄漏事故处理时会有地面清洗废水,添利公司已设置排水收集系统。

综上,添利公司货物包装和暂存土壤污染预防措施较为完善,无污染隐患。

3.1.3 生产区

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染 隐患排查与整改技术要点"列举的生产区土壤污染预防设施与措施推荐性组合要 求,各生产区类型要求如下。

表3-5 生产区土壤污染预防与措施推荐性组合

组合	土壤污染预防设施功能	
一、密闭		
1	● 无需额外防护设施 ● 注意车间内传输泵、易发生故 障的零部件、检测样品采集 点等位置	制定检修计划对系统做全面检查(比如定期检查系统的密闭性,下同)日常维护
2	普通阻隔设施注意车间内传输泵、易发生故障的零部件、检测样品采集点等位置	● 制定检修计划● 对系统做全面检查● 日常维护
3	 ● 防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水 ● 渗漏、流失的液体能得到有效收集	● 定期开展防渗效果检查● 日常维护
二、半开	放式设备	
1	● 普通阻隔设施 ● 防止雨水进入阻隔设施	● 日常目视检查● 有效应对泄漏事件
2	● 在设施设备容易发生泄漏、渗漏的地方设置防滴漏设施● 能及时排空防滴漏设施中雨水	● 定期清空防滴漏设施● 日常目视检查● 日常维护
3	● 防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水● 渗漏、流失的液体能得到有效收集并定期清理	● 定期开展防渗效果检查● 日常目视检查● 日常维护
三、开放	(式设备(液体物质)	
1	● 防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水● 渗漏、流失的液体能得到有效收集并定期清理	 定期开展防渗效果检查 日常目视检查 日常维护
四、开放	[式设备(粘性物质或者固体物质)	
1	● 普通阻隔设施,且能防止雨水 进入,或者及时有效排出雨 水	● 日常目视检查● 有效应对泄漏事件
2	防渗阻隔系统,且能防止雨水进入,或者及时有效排出雨水渗漏、流失的液体能得到有效收集并定期清理	● 定期防渗效果检查● 日常目视检查● 日常维护

根据现场踏勘对厂区内重点场所和重点设施设备的识别,结合《重点监管

单位土壤污染隐患排查指南(试行)》中生产区土壤污染预防设施与措施推荐性组合要求,对企业厂区生产区进行逐一核查。

企业生产区为PCB车间,主要生产流程集中在D3楼,涉及工艺有蚀刻、棕化、沉铜、干菲林、电镀、沉锡等,每个车间之间互相独立,设有车间标识。 车间地面做了环氧树脂防渗处理,能有效防止流失液体渗漏。

企业生产区内含各种类型的设备,大部分为开放式设备,各车间现场排查 均未明显污染痕迹,车间每天都有专人巡视检查,土壤污染隐患较小。

3.1.3.1 废水排水系统

根据《重点监管单位土壤污染隐患排查指南(试行)》中"附录A土壤污染 隐患排查与整改技术要点"列举的废水排水系统土壤污染预防设施与措施推荐性 组合要求,各废水排水系统类型要求如下。

表3-6 废水排水系统土壤污染预防设施与措施推荐性组合

组合	土壤污染预防设施功能	土壤污染预防措施
	成的地下废水排水系统	
1	● 注意排水沟、污泥收集设施、 油水分离设施、设施连接处 和有关涵洞、排水口等,防 止渗漏	定期开展密封、防渗效果检查,或者制定检修计划日常维护
二、新建	地下废水排水系统	
1	● 防渗设计和建设 ● 注意排水沟、污泥收集设施、 油水分离设施、设施连接处 和有关涵洞、排水口等,防 止渗漏	● 定期开展防渗效果检查● 日常维护
三、地上	下废水排水系统	
1	● 防渗阻隔设施 ● 注意排水沟、污泥收集设施、 油水分离设施、设施连接处 和有关涵洞、排水口等,防 止渗漏	● 目视检查 ● 日常维护

根据现场踏勘对厂区内重点场所和重点设施设备的识别,结合《重点监管单位土壤污染隐患排查指南(试行)》中废水排水系统土壤污染预防设施与措施推荐性组合要求,对企业污水处理系统进行逐一核查。

由访谈可知,添利公司已于2014年将废水排水系统所有废水排水管道改为

明管,将地下管道作废。废水分类处理,有自动加料调节与监控装置,有废水排放量与主要成分自动在线监测装置。D3生产车间设有半埋地式排水沟,可能存在泄漏或者满溢的隐患,环氧树防渗层可能存在破损无法及时发现。

排查建议要定期检查防渗阻隔设施,对于半埋地式排水沟应定期检查,定期清空防滴漏设施,存在一定的污染隐患。

3.1.3.2 一般工业固体废物贮存间

根据《重点监管单位土壤污染隐患排查指南(试行)》要求,一般固废暂存场土壤污染预防设施参考《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),GB18599规定了一般工业固体废物贮存场的选址、建设、运行、封场等过程的环境保护要求,以及监测要求和实施与监督等内容。一般工业固体废物贮存场可按照GB18599的要求开展排查和整改,其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求;

一般工业固体废物贮存间位于原发电房区,该区域原为厂区柴油发电房。 2007年柴油发电房陆续停用后,发电房闲置,用于存放一般工业固体废物,交 专业回收公司回收处理。

生产过程产生的边角料、粉尘,收集后交具有严控废物回收资质的单位回收处理,添利公司交由广东丰顺钟声再生资源有限公司收集处理。

一般工业固体废物和危险废物分隔存放,减少固体废物的转移次数,防止 发生撒落和混入的情况,一般工业固体废物贮存间设置防渗、防风、防晒、防 雨措施,设置环境保护图形标志,水泥硬化地面,对土壤造成污染风险较小。

3.1.3.3 危险废物贮存间

根据《重点监管单位土壤污染隐患排查指南(试行)》要求,危险废物贮存间土壤污染预防设施参考《危险废物贮存污染控制标准(GB18597-2001)》GB18597规定了对危险废物贮存的一般要求,对危险废物包装、贮存设施的选址、设计、运行、安全防护、监测和关闭等要求。危险废物贮存库参考《危险废物贮存污染控制标准》(GB18597-2001)防渗要求详细如下。

表 3-7 危险废物贮存间土壤污染预防设施与措施推荐性组合

组合	土壤污染预防设施功能	土壤污染预防措施
1	 地面与裙脚要用坚固、防渗的材料建造,建筑材料必须与危险废物相容 必须有泄漏液体收集装置、气体导出口及气体净化装置 设施内要有安全照明设施和观察窗口 用以存放装载液体、半固体危险废物容器的地方,必须有耐腐蚀的硬化地面,且表面无裂隙 应设计堵截泄漏的裙脚,地面与裙脚所围建的容积不低于堵截最大容器的最大储量或总储量的1/5 不相容的危险废物必须分开存放,并设有隔离间隔断 	定期开展防渗效果检查日常维护和目视检查

添利公司危险废物贮存间。危险废物主要包括:废水处理后产生的含铜污泥、废油墨、菲林渣、废弃线路板及其边角料、蚀刻废液、废机油、废树脂、废菲林胶片、定影废液、褪锡废液、含镍废液、含镍废液、含镍污泥、废旧日光灯、废金水、轧辊废液、废活性炭、废药水过滤棉芯、沾化学品废布及废纸、废油墨/油漆桶等包装容器、废药水包装桶、废弃线路板及其边角料等。均委托危险废物资质单位进行处置。

危险废物产生和处理方式:

- (1) 废水处理后产生的污泥,属危险废物,危险废物类别: HW22,废物类别为:含铜废物,交有资质单位广东飞南资源利用股份有限公司回收处理。
- (2)废油墨属危险废物,危险废物类别: HW12,废物类别为:染料、涂料废物,收集后交肇庆市新荣昌环保股份有限公司回收处理。
- (3)废机油,属于危险废物,编号:HW08,收集后交肇庆市新荣昌环保股份有限公司回收处理。
- (4) 蚀刻废液属于危险废物,危险废物类别: HW22,废物类别为:含铜废物,交广州市萌辉电子科技有限公司/中山市中环环保废液回收有限公司回收处理:
- (5)废树脂,含金废树脂,属于危险废物,危险废物类别:HW13,废金水,属于危险废物,类别为:HW33,收集后交由励福(江门)环保科技股份有限公司回收处理。
- (6)含镍废液,含镍污泥,含银废液,褪锡废液,均属危险废物,类别为: HW17,交由肇庆市新荣昌环保股份有限公司/东莞市银辉环保科技有限公

司/广东中耀环境科技有限公司回收处理。

- (7) 厂区照明产生的废旧日光灯管,属危险废物,危险废物类别为: HW29,交由肇庆市新荣昌环保股份有限公司回收处理。
- (8)产生的废活性炭,废药水空桶,废油墨/废油漆桶等废包装容器,废 药水过滤棉芯,沾化学品废布及废纸,实验室废液等废弃物,均属于危险废 物,类别为: HW49,交由肇庆市新荣昌环保股份有限公司回收处理。
- (9)产生的废弃线路板及其边角料,属于危险废物,类别为: HW49,交由深圳玥鑫科技有限公司/东莞市万容环保技术有限公司回收处理。

综上所述,危废仓内均已设置地面防渗地坪漆和泄漏液体收集装置,危险 废物委托危险废物处理资质单位处置,对周围环境影响不大,对土壤隐患较 小。

3.1.3.4 原柴油发电系统

1994年添利电子建厂,建有一套柴油发电系统供厂区用电,该系统2007年 后陆续停用,拆除锅炉和立式柴油罐,封油管,之后发电房用作一般固体废物 贮存区。2022年,添利电子公司将原锅炉和柴油罐区域改造为园区绿化。

由卫星影像图和收集到的有关资料可知,原有三个地上立式柴油罐,油罐下方连接埋地式油管输送往发电房发电,油管具体位置有待进一步确认,具体分布见下图。

图 3-3 原柴油库、发电房卫星影像图

原柴油发电系统存在地下油管,且柴油油罐、发电设备均有柴油泄漏的风险。该区域已于2022年、2023年进行过土壤和地下水监测排查,监测结果显示该区域对土壤污染基本无影响,本次排查不再列入监测单元。

3.2污染区域识别

3.2.1 重点监测单元划分

根据《工业企业土壤和地下水自行监测技术指南(试行)》的要求,将可能通过渗漏、流失、扬散等途径导致土壤或地下水污染的场所或设备识别为重点监测单元,开展土壤和地下水监测工作。重点场所或重点设施分布较密集的区域可统一划分为一个重点监测单元,每个重点监测单元原则上面积不大于6400m²。

企业目前对土壤污染隐患较大的是危废贮存区D9和废水处理区,由于厂区一般固体废弃物贮存区(原发电房和原锅炉区)和绿地(原油库)已于2022年、2023年进行过土壤和地下水监测排查,监测结果显示一般固体废弃物贮存区(原发电房和原锅炉区)和绿地(原油库)对土壤污染基本无影响,所以此次监测未将其纳入其中。具体位置见图 3-所示。根据表所述原则对其进行监测单元类别的分类。

表 3-11 重点监测单元分类表

单元类别	划分依据
一类单元	内部存在隐蔽性重点设施设备的监测单元
二类单元	除一类单元外其他重点监测单元
注:隐蔽性重点设施设下、半地下或接地的促	设备,指污染发生后不能及时发现或处理的重点设施设备,如地 者罐、池体、 管道等。

通过对现有资料收集和现场踏勘的过程和结果进行分析、总结和评价,根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209—2021)规定的土壤污染物暴露途径及现场情况,将有限公司划分为7个重点监测单元: 2个一类单元和5个二类单元。企业场地重点单元划分详见图 3-。

图 3-4 监测单元分布图

3.2.1.1 一类单元

(1) **D3** 生产区单元

该单元占地面积约25000m²,囊括D3建筑,建筑东侧和南侧的地下排水管区域。D3楼为5层建筑,其中主要工序沉铜位于3-4楼,存在两条板电线分别位于2楼和4楼,图形电镀位于4-5楼,沉金沉银工艺位于3-4楼。除以上,该楼涉及的工艺还有钻孔、外层干菲林、外层蚀刻、喷锡、沉锡、抗氧化、绿油外、形加工和包装。

D3作为PCB板主要生产区,存在隐蔽性重点设施,D3东侧和南侧地下有原排水管管沟。按照《工业企业土壤和地下水自行监测技术指南(试行)》的要求,属一类单元。

(2) 废水处理站单元

该单元占地面积约8800m²,存在传输泵和多废水处理池池体,涉及半埋地式池体。该单元原为鱼塘,填埋后修筑起废水处理站,相对于厂区其他建筑,地势较低。

按照《工业企业土壤和地下水自行监测技术指南(试行)》的要求,属一类单元。

3.2.1.2 二类单元

(1) 危废贮存区 D9 单元

该单元占地面积约6400m²,5层建筑,原为生产区,停产后作为危废贮存区使用。

按照《工业企业土壤和地下水自行监测技术指南(试行)》的要求,该单元属二类单元。

(2) **DA** 生产区单元

该单元占地面积约3500m²,5层建筑,涉及工艺有开料、压板、内外层干菲林、蚀刻和黑化。按照《工业企业土壤和地下水自行监测技术指南(试行)》的要求,该单元属二类单元。

(3) 化学品仓库单元

该单元占地面积约800m²,1层建筑,存储厂区工艺涉及的原辅料。按照《工业企业土壤和地下水自行监测技术指南(试行)》的要求,该单元属二类

单元。

(4) 危废贮存区单元

该单元占地面积约2000m²,存储厂区废油墨、含铜污泥等危险废物,交由有关资质的公司处理。按照《工业企业土壤和地下水自行监测技术指南(试行)》的要求,该单元属二类单元。

(5) 生化处理区单元

该单元占地面积约800m²,2层建筑,负责厌氧处理厂区的生活污水和部分工业废水。按照《工业企业土壤和地下水自行监测技术指南(试行)》的要求,该单元属二类单元。

3.3监测点位布设及原因分析

3.3.1 布设原则

- (1)监测点位的布设应遵循不影响企业正常生产且不造成安全隐患与二次 污染的原则。
- (2)点位应尽量接近重点单元内存在土壤污染隐患的重点场所或重点设施设备。
- (3)设施设备占地面积较大时,应尽量接近该场所或设施设备内最有可能 受到污染物渗漏、流失、扬散等途径影响的隐患点。
- (4) 根据地勘资料,目标采样层无土壤可采或地下水埋藏条件不适宜采样的区域,可不进行相应监测,但应在监测报告中提供地勘资料并予以说明。

3.3.2 土壤和地下水点位选取原则

(1) 土壤监测点

- a) 监测点位置及数量
 - 1) 一类单元
- 一类单元涉及的每个隐蔽性重点设施设备周边原则上均应布设至少1个深层土壤监测点,单元内部或周边还应布设至少1个表层土壤监测点。

2) 二类单元

每个二类单元内部或周边原则上均应布设至少1个表层土壤监测点,具体位

置及数量可根据单元大小或单元内重点场所或重点设施设备的数量及分布等实际情况适当调整。监测点原则上应布设在土壤裸露处,并兼顾考虑设置在雨水易于汇流和积聚的区域,污染途径包含扬散的单元还应结合污染物主要沉降位置确定点位。

b) 采样深度

1) 深层土壤

深层土壤监测点采样深度应略低于其对应的隐蔽性重点设施设备底部与土壤接触面。

下游50m范围内设有地下水监测井并按照本标准要求开展地下水监测的单元可不布设深层土壤监测点。

2) 表层土壤

表层土壤监测点采样深度应为0~0.5 m。

单元内部及周边20 m范围内地面已全部采取无缝硬化或其他有效防渗措施,无裸露土壤的,可不布设表层土壤监测点,但应在监测报告中提供相应的影像记录并予以说明。

(2) 地下水监测点

a) 对照点

企业原则上应布设至少1个地下水对照点。

对照点布设在企业用地地下水流向上游处,与污染物监测井设置在同一含水层,并应尽量保证不受自行监测企业生产过程影响。

临近河流、湖泊和海洋等地下水流向可能发生季节性变化的区域可根据流向变化适当增加对照点数量。

b) 监测井位置及数量

每个重点单元对应的地下水监测井不应少于1个。每个企业地下水监测井(含对照点)总数原则上不应少于3个,且尽量避免在同一直线上。

应根据重点单元内重点场所或重点设施设备的数量及分布确定该单元对应 地下水监测井的位置和数量,监测井应布设在污染物运移路径的下游方向,原则上井的位置和数量应能捕捉到该单元内所有重点场所或重点设施设备可能产生的地下水污染。

地面已采取了符合HJ 610和HJ 964相关防渗技术要求的重点场所或重点设施设备可适当减少其所在单元内监测井数量,但不得少于1个监测井。

企业或邻近区域内现有的地下水监测井,如果符合本标准及HJ 164的筛选要求,可以作为地下水对照点或污染物监测井。

监测井不宜变动,尽量保证地下水监测数据的连续性。

c) 采样深度

自行监测原则上只调查潜水。涉及地下取水的企业应考虑增加取水层监测。

3.3.3 厂区土壤和地下水监测布点

根据《工业企业土壤和地下水自行监测技术指南(试行)》的要求,将可能通过渗漏、流失、扬散等途径导致土壤或地下水污染的场所或设备识别为重点监测单元,开展土壤和地下水监测工作。重点场所或重点设施分布较密集的区域可统一划分为一个重点监测单元,每个重点监测单元原则上面积不大于6400m²。

广州添利电子科技有限公司占地总面积135000m²,根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)划分9个重点监测单元。

3.3.3.1 一类单元点位布设情况

生产区D3单元:面积约25000m²,故在此布设S1,S2,S4和S14四个土壤监测点。由于此处为主要生产区,涉及污染物排放种类较多,且D3建筑东面有原地下排水沟,存在较大隐患,故四个点位都做深层采样。其中S2地位布设于收集池旁,地下水下游处。同时采用之前的监测水井1,进行地下水监测。

废水处理站单元:面积约8800m²,布设S3、S5。存在半埋地式池体,且西南面有存储污水处理后的含铜污泥,属于危险废物,故此处点位也做深层采样处理。采用之前的监测水井1,进行地下水监测。

3.3.3.2 二类单元点位布设情况

危废贮存区D9单元:面积约6400m²,布设土壤与地下水共用监测点S6,应 布设至少1个表层土壤监测点。 生产区DA单元:面积约3500m²,原则上应布设至少1个表层土壤监测点,故在此布设S7一个表层土壤监测点。

化学品仓单元:面积约800m²,原则上应布设至少1个表层土壤监测点,故 在此布设S8一个表层土壤监测点。

危废贮存区单元:面积约2000m²,原则上应布设至少1个表层土壤监测点,故在此布设S11一个表层土壤监测点。

生化处理单元:面积约800m²,原则上应布设至少1个表层土壤监测点,故 在此布设S10一个表层土壤监测点。

按照《工业企业土壤和地下水自行监测(试行)》(HJ1209-2021)》的相关规定,深层土壤为三年一测,该公司2022年度已采集深层土壤监测,2023年也完成了当年的表层土壤监测,本次仅需采集表层土壤样品。本次土壤环境自行监测在地块内布设11个土壤调查点位和5个土壤和地下水共用调查点位,场地内保有原土壤隐患排查的水位监测点,如原水井GW1-GW5,将水井纳入监测,不再定新的水井点位。各布点区域的土壤和地下水点位布设位置如图3-5所示,符合技术指南布点数量要求。

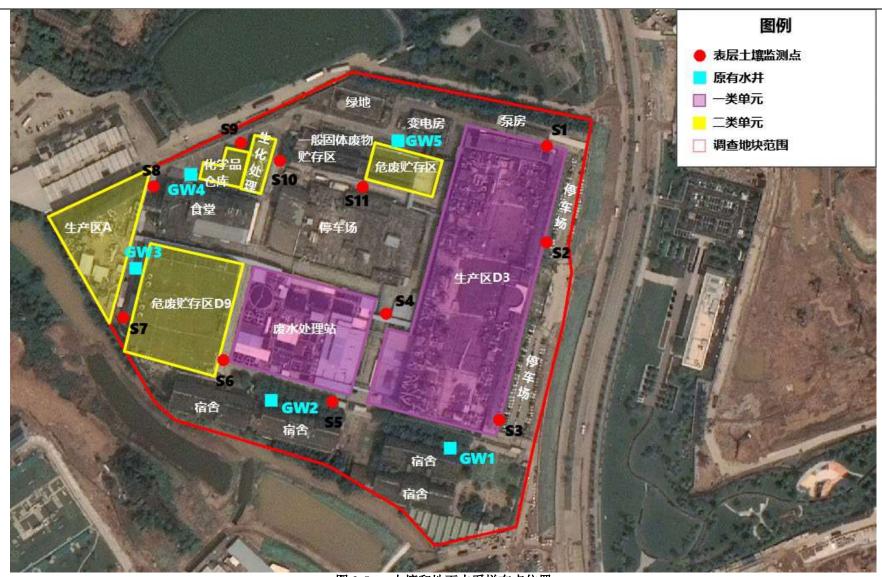


图 3-5 土壤和地下水采样布点位置

3.3.4 土壤布点原因及监测项目

点位	数量 (孔)	样品 数量	孔深 (m)	布设原因	检测项目	备注
S1	1	1	表层			-
S2	1	1	表层	监测生产区 D3 对土壤的影响		-
S3	1	1	表层	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
S4	1	1	表层	监测生产区 D3、废水处理站 对土壤的影响		-
S5	1	1	表层	监测废水处理站 对土壤的影响	pH、水分、镍、铜、铅、	-
S6	1	1	表层	监测废水处理站 对土壤的影响	锌、氰化物、氟化物、 VOCs(17项)、石油烃 (C10-C40)、丙酮、异佛尔 酮和多环芳烃(16项)	-
S7	1	1	表层	监测危废贮存区 D9、生产区 A 对 土壤的影响		-
S8	1	1	表层	监测生产区 A 对 土壤的影响		-
S9	1	1	表层	监测化学品仓库 对土壤的影响		-
S10	1	1	表层	监测生化处理区 对土壤的影响		-
S11	1	1	表层	监测危废贮存区 对土壤的影响		-

表 3-18 土壤布点原因及监测项目表

注: VOCs: 氯甲烷、氯乙烯、1,1-二氯乙烯、二氯甲烷、反式-1,2-二氯乙烯、1,1-二氯乙烷、顺式-1,2-二氯乙烯、氯仿、1,1,1-三氯乙烷、四氯化碳、1,2-二氯乙烷、三氯乙烯、1,2-二氯丙烷、1,1,2-三氯乙烷、四氯乙烯、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷;

多环芳烃 16 项: 萘、苯并[α]蔥、菌、苯并[b]荧蒽、苯并[k]荧蒽、苯并[α]芘、茚并[1, 2, 3-cd]芘、二苯并[a,h]蔥、苊、苊烯、蒽、苯并(g,h,i)苝、荧蒽、芴、菲、芘。

3.3.5 地下水布点原因及监测项目

地下水监测点布设须充分考虑地下水流向、可能出现的污染情况、场地水 文地质条件、水位等。监测井按如下原则进行布设:

①在地块内建立地下水监测井,具体在地下水的上游、下游、侧翼以及重点关注区域分别布设监测井;②为了解污染物在土壤和地下水中的迁移情况,将地下水监测井点与土壤采样点合并;③监测井深度及筛管位置应根据场地实

际水文地质情况确定。

结合土壤调查所获的污染物分布特征和地块水文地质结果,结合水文特征 判断该地块地下水由东向西流,考虑地块内地下水上游、下游和重点关注区。 由于2023年地块内上游、下游和重点关注区均有布设监测井,经踏勘后监测范 围能覆盖整个地块,且均保留完整、可用,因此本次监测不再增加监测井。具 体的调查点位分布见图3-5中方形点位,监测信息见表3-18。

表 3-13 地下水布点原因及监测项目表

钻孔编号	采样深度 (m)	数量 (组)	样品 类型	检测项目	备注
GW1	水面以下 0.5m	1	水样		原有监测井
GW2	水面以下 0.5m	1	水样	pH、浊度、锌、镍、铜、总	原有监测井
GW3	水面以下 0.5m	1	水样	氮、氨氮、氰化物、氟化物、 石油烃(C10-C40)、异佛尔 酮、丙酮、多环芳烃(16项)	原有监测井
GW4	水面以下 0.5m	1	水样		原有监测井
GW5	水面以下 0.5m	1	水样		原有监测井

4 现场采样和实验室分析

4.1土孔钻探与土壤采样

本次计划设11个土壤采样点,均采集表层样品。本项目土壤样品的钻探和采样按照《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)、《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)、《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)、《重点行业企业用地调查样品采集保存和流转技术规定(试行)》(环办土壤(2017)67号)等要求进行。

4.1.1 土孔钻探

土孔钻探按照钻机架设、开孔、钻进、取样、封孔、点位复测的流程进 行,各环节技术要求如下:

根据钻探设备实际需要清理钻探作业面,架设钻机,设立警示牌或警戒线。

开孔直径应大于正常钻探的钻头直径, 开孔深度应超过钻具长度。

每次钻进深度宜为50cm~150cm,岩芯平均采取率一般不小于70%,其中, 粘性土及完整基岩的岩芯采取率不应小于85%,砂土类地层的岩芯采取率不应小 于65%,碎石土类地层岩芯采取率不应小于50%,强风化、破碎基岩的岩芯采取 率不应小于40%。应尽量选择无浆液钻进,全程套管跟进,防止钻孔坍塌和上 下层交叉污染;不同样品采集之间应对钻头和钻杆进行清洗,清洗废水应集中 收集处置;钻进过程中揭露地下水时,要停钻等水,待水位稳定后,测量并记 录初见水位及静止水位;土壤岩芯样品应按照揭露顺序依次放入岩芯箱,对土 层变层位置进行标识。

钻孔过程中按要求填写土壤钻孔采样记录单,对采样点、钻进操作、岩芯箱、钻孔记录单等环节进行拍照和视频记录;采样拍照要求:按照钻井东、南、西、北四个方向进行拍照记录,照片应能反映周边建构筑物、设施等情况,以点位编号+E、S、W、N分别作为东、南、西、北四个方向照片名称;钻孔拍照要求:应体现钻孔作业中开孔、套管跟进、钻杆更换和取土器使用、原状土样采集等环节操作要求,每个环节至少1张照片和1段视频;岩芯拍照要求:体现整个钻孔土层的结构特征,重点突出土层的地质变化和污染特征,每

个岩芯至少1张照片; 其他照片还包括钻孔照片(含钻孔编号和钻孔深度)、钻孔记录单照片等。

钻孔结束后,对于不需设立地下水采样井的钻孔应立即封孔并清理恢复作业区地面。

使用全球定位系统(GPS)或手持智能终端对钻孔的坐标进行复测,记录坐标和高程。

钻孔过程中产生的污染土壤应统一收集和处理,对废弃的一次性手套、口 罩等个人防护用品应按照一般固体废物处置要求进行收集处置。

(1) 土壤采样孔深度

土壤采样孔深度原则上应达到地下水初见水位;若地下水埋深大且土壤无明显污染特征,土壤采样孔深度原则上不超过15m。

根据隐患排查结论,建议将采样深度设置在4米。

(2) 地下水采样井深度

地下水采样井以调查潜水层为主。若地下水埋深大于15m且上层土壤无明显污染特征,可不设置地下水采样井。采样井深度应达到潜水层底板,但不应穿透潜水层底板;当潜水层厚度大于3m时,采样井深度应至少达到地下水水位以下3m。

根据隐患排查结论,建议将地下水监测井深度设置为5米。

4.1.2 采样深度

(1) 土壤样品采样深度

原则上每个深层采样点位至少在3个不同深度采集土壤样品,若地下水埋深 <3m,至少采集2个土壤样品。采样深度原则上应包括表层0cm-50cm、存在污染 痕迹或现场快速检测识别出的污染相对较重的位置;若钻探至地下水位时,原则上应在水位线附近50cm范围内和地下水含水层中各采集一个土壤样品。当土层特性垂向变异较大、地层厚度较大或存在明显杂填区域时,可适当增加土壤 样品数量。

(2) 地下水样品采样深度

地下水采样深度应依据场地水文地质条件及调查获取的污染源特征进行确定。对可能含有低密度或高密度非水溶性有机污染物的地下水,应对应的采集

上部或下部水样。其他情况下采样深度可在地下水水位线0.5m以下。 根据隐患排查结论,建议地下水样品采集在水位线0.5m以下。

4.2样品保存与流转

样品采集后,针对不同检测项目选择不同样品保存方式,土壤样品的保存按照《土壤质量土壤样品长期和短期保存指南》(GB/T32722-2016)、《土壤环境监测技术规范》(HJ/T166-2004)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)、土壤中的六价铬保存参照《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法》(HJ1082-2019)等相关规定进行,地下水样品保存按照《地下水环境监测技术规范》(HJ164-2020)和《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)要求进行。

4.2.1 现场暂存

- (1) 无机污染物样品用塑料瓶(袋)收集;挥发性和半挥发性有机物的样品宜使用具有聚四氟乙烯密封垫的直口螺口瓶收集,样品应充满容器整个空间。
- (2) 挥发性有机污染物样品瓶可采取适当的封闭措施(如甲醇或水液封等 方式保存于采样瓶中)或加入稳定剂。
- (3)现场暂存、采样现场需配备样品保温箱,内置冰冻的蓝冰,样品采集 后应立即存放至保温箱内,保证样品在送至实验室前均在4℃保温箱内低温保 存。

4.2.2 样品运输交接、流转保存

- (1) 采样结束后现场逐项检查,如采样记录表、样品标签等,如有缺项、漏项和错误处,应及时补齐和修正后方可装运;各样品应按类别、名称和编号分类保存。
- (2)样品由专人将从现场送往实验室,在寄送到分包实验室的流转过程中,样品保存在存有冷冻蓝冰的保温箱内,4℃低温保存流转,且严防样品的损失、混淆和沾污。
- (3)运输样品时,应填写实验室准备的采样送检单,并尽快将样品与采样送检单一同送往分析检测实验室,并在样品的有效保存时间内完成分析测试工

作。采样送检单应保证填写正确无误并保存完整。

(4)样品交接:样品送到实验室后,采样人员和实验室样品管理员双方同时清点核实样品,并在样品流转单上签字确认,样品流转单一式四份(自复写),由采样人员填写并保存一份,样品管理员保存一份,交分析人员两份,其中一份存留。

4.2.3 实验室保存

到达实验室后,送样者和接样者双方同时清点样品,即将样品逐件与样品登记表、样品标签和采样记录单进行核对,并在样品流转单上签字确认,样品交接单由双方各存一份备查。核对无误后,将样品分类、整理和包装后放于冷藏柜中。

4.2.4 土壤样品的保存

土壤新鲜样品的保存条件土壤样品的保存方式详见下表。

序号	项目	容器	保存条件	保质期
1	六价铬	P, G, T	4℃低温保存	萃取前30天,萃 取后4天
2	汞	P, G, T	加HNO₃使pH<2,4℃ 低温保存	28天
3	其他金属(除六价铬 和汞)	P, G, T	加HNO3使pH<2,4℃ 低温保存	180天
4	总石油烃(TPH): 可萃取	G,用琥珀密封瓶 盖	4℃低温保存	萃取前14天,萃 取后40天
5	半挥发性有机物	G, 用聚四氟乙烯 密封瓶盖	4℃低温保存, 0.008%Na ₂ S ₂ O ₃	萃取前14天,萃 取后40天
6	挥发性有机物	G,用聚四氟乙烯 薄膜密封瓶盖	4℃低温保存	7天

表 4-1 土壤样品保存方式

注: (1)聚乙烯 (P); 玻璃 (G); 聚乙烯复合气泡垫 (T)。

(1) 预留样品

预留样品在样品库造册保存。

(2) 分析取用后的剩余样品

分析取用后的剩余样品,待测定全部完成数据报出后,也移交样品库保

存。

(3) 保存时间

分析取用后的剩余样品一般保留半年,预留样品一般保留2年(无机分析取 用后的剩余样品至少保留3年)。特殊、珍稀、仲裁、有争议样品一般要永久保 存。

(4) 样品库要求

保持干燥、通风、无阳光直射、无污染;要定期清理样品,防止霉变、鼠 害及标签脱落。样品入库、领用和清理均需记录。

4.2.5 地下水样品保存

地下水样品的保存具体要求如下:

- (1) 应设样品贮存间,用于进实验室后测试前及留样样品的存放,两者需 分区设置,以免混淆。
- (2) 样品贮存间应置冷藏柜,以贮存对保存温度条件有要求的样品。必要 时,样品贮存间应配置空调。
 - (3) 样品贮存间应有防水、防盗和保密措施,以保证样品的安全。
- (4) 样品管理员负责保持样品贮存间清洁、通风、无腐蚀的环境,并对贮 存环境条件加以维持和监控。
- (5) 地下水样品变化快、时效性强,监测后的样品均留样保存意义不大, 但对于测试结果异常样品、应急监测和仲裁监测样品,应按样品保存条件要求 保留适当时间。留样样品应有留样标识。

表 4-2 地下水样品保存方式

序号	项目	容器	保存条件	保质期
1	六价铬	P, G, T	4℃低温保存	萃取前30天,萃 取后4天
2	汞	P, G, T	加HNO₃使pH<2,4℃ 低温保存	28天
3	其他金属(除六价铬 和汞)	P, G, T	加HNO3使pH<2,4℃ 低温保存	180天
4	总石油烃(TPH): 可萃取	G,用琥珀密封瓶 盖	4℃低温保存	萃取前14天,萃 取后40天

序号	项目	容器	保存条件	保质期
5	半挥发性有机物	G,用聚四氟乙烯 密封瓶盖	4℃低温保存, 0.008%Na ₂ S ₂ O ₃	萃取前14天,萃 取后40天
6	挥发性有机物	G,用聚四氟乙烯 薄膜密封瓶盖	4℃低温保存	7天

注: ①聚乙烯 (P); 玻璃 (G); 聚乙烯复合气泡垫 (T)。

4.3实验室分析测试

4.3.1 样品分析指标

根据前文检测因子选取及原因分析,确定具体检测项目如下两表所示:

项目类别 监测项目 数量 理化性质及重 pH、水分、镍、铜、铅、锌 6项 金属 氯甲烷、氯乙烯、1,1-二氯乙烯、二氯甲烷、反式-1,2-二氯乙 烯、1,1-二氯乙烷、顺式-1,2-二氯乙烯、氯仿、1,1,1-三氯乙 挥发性有机物 烷、四氯化碳、1,2-二氯乙烷、三氯乙烯、1,2-二氯丙烷、1,1,2-17项 三氯乙烷、四氯乙烯、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、 1,2,3-三氯丙烷 萘、苯并[α]蒽、菌、苯并[b]荧蒽、苯并[k]荧蒽、苯并[α]芘、 多环芳烃 茚并[1, 2, 3-cd]芘、二苯并[a,h]蒽、苊、苊烯、蒽、苯并 16项 (g,h,i) 莊、荧蔥、芴、菲、芘 其它特征污染 氰化物、氟化物、石油烃(C10-C40)、异佛尔酮、丙酮 14项 物 合计 共53项

表 4-3 土壤自行监测项目汇总表

表 4-4 地下水自行监测项目汇总表

监测项目	说明
pH、浊度、锌、镍、铜、总氮、氨氮、氰化物、氟化物、石油烃(C10-C40)、异佛尔酮、丙酮、萘、苯并[α]蔥、䓛、苯并[b]荧蔥、苯并[k]荧蒽、苯并[α]芘、茚并[1 , 2, 3-cd]芘、二苯并[a , h]蔥、苊、苊烯、蔥、苯并(g , h , i)	共28项

4.3.2 实验室样品分析检测方法

本项目实验室样品分析检测由具有CMA资质的广州中德环境技术研究院有限公司完成。使用的分析方法包括国家标准的测试方法、其检测方法的名称或

代号以及对应的方法检出限详见下表。

表 4-5 土壤检测项目分析测试方法及检出限

检测因子	检测方法	分析仪器名称/型号	检出限
水分	《土壤干物质和水分的测定重量 法》(HJ 613-2011)	电子天平/YP2002	_
pH 值	《土壤 pH 值的测定电位法》 (HJ 962-2018)	pH 计/PHS-3E	
铜			1 mg/kg
镍	《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》	火焰原于吸収分光光	3 mg/kg
铅	(HJ 491-2019)	度计/GGX-600	10 mg/kg
锌			1 mg/kg
氯甲烷			1.0 μg/kg
氯乙烯			1.0 μg/kg
1,1-二氯乙烯			1.0 μg/kg
二氯甲烷			1.5 μg/kg
反式-1,2-二氯乙烯			1.4 μg/kg
1,1-二氯乙烷		三 气相色谱-质谱联用 仪 ISQ7000/ TRACE1300/PTC-761	1.2 μg/kg
顺式-1,2-二氯乙烯			1.3 μg/kg
氯仿			1.1 μg/kg
1,1,1-三氯乙烷			1.3 μg/kg
四氯化碳			1.3 μg/kg
苯	《土壤和沉积物 挥发性有机物的测定		1.9 μg/kg
1,2-二氯乙烷	吹扫捕集/气相色谱-质谱法》		1.3 μg/kg
三氯乙烯	(HJ 605-2011)		1.2 μg/kg
1,2-二氯丙烷			1.1 μg/kg
甲苯			1.3 μg/kg
1,1,2-三氯乙烷			1.2 μg/kg
四氯乙烯			1.4 μg/kg
氯苯			1.2 μg/kg
1,1,1,2-四氯乙烷			1.2 μg/kg
乙苯			1.2 μg/kg
间,对-二甲苯			1.2 μg/kg
邻二甲苯			1.2 μg/kg
苯乙烯			1.1 μg/kg

检测因子	检测方法	分析仪器名称/型号	检出限
1,1,2,2-四氯乙烷			1.2 μg/kg
1,2,3-三氯丙烷			1.2 μg/kg
1,4-二氯苯			1.5 μg/kg
1,2-二氯苯			1.5 μg/kg
丙酮			1.3μg/kg
苯并[a]蒽			0.1 mg/kg
苯并[a]芘			0.1 mg/kg
苯并[b]荧蒽			0.2 mg/kg
苯并[k]荧蒽			0.1 mg/kg
崫			0.1 mg/kg
二苯并[a,h]蒽			0.1 mg/kg
茚并[1,2,3-c,d]芘			0.1 mg/kg
萘		 气相色谱-质谱联用仪	0.09 mg/kg
苊烯	《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 834-2017)	ISQ7000/TRACE1300/	0.09 mg/kg
苊		AI1310	0.1mg/kg
芴			0.08mg/kg
菲			0.1mg/kg
蒽			0.1mg/kg
荧蒽			0.2mg/kg
芘			0.1mg/kg
苯并[g,h,i]菲			0.1mg/kg
异佛尔酮			0.07mg/kg
石油烃 (C ₁₀ -C ₄₀)	《土壤和沉积物 石油烃(C ₁₀ -C ₄₀)的测 定 气相色谱法》(HJ 1021-2019)	气相色谱仪 /TRACE1300	6 mg/kg
氰化物	《土壤 氰化物和总氰化物的测定 分光光 度法》(HJ 745-2015)	紫外可见分光光度计 /ULTRA-3660	0.01mg/kg
氟化物	《土壤质量 氟化物的测定 离子选择电极 法》(GB/T 22104-2008)	离子计/PXSJ-216F	125mg/kg

表 4-6 地下水检测项目分析测试方法及检出限

检测因子	检测方法	分析仪器名称/型号	检出限			
浑浊度	《水质 浊度的测定 浊度计法》 (HJ 1075-2019)	浊度计/WZS-180A	0.3NTU			
pH 值	《水质 pH 值的测定 电极法》 (HJ1147-2020)	pH 计/PHS-3E				

检测因子	检测方法	分析仪器名称/型号	检出限
锌			0.67μg/L
铜	《水质 65 种元素的测定 电感耦合等离 子体质谱法》(HJ 700-2014)	电感耦合等离子体 质谱仪 iCAP-RQ	0.08µg/L
镍	J 11/2/41/2// (110 100 2011)	May lott to	0.06μg/L
石油烃(C ₁₀ -C ₄₀)	《水质 可萃取性石油烃(C10-C40)的测 定 气相色谱法》(HJ 894-2017)	气相色谱 TRACE1300	0.01mg/L
丙酮	《水质 甲醇和丙酮的测定 顶空气相色谱 法》(HJ895-2017)	气相色谱 TRACE1300	0.02mg/L
氰化物	《水质 氰化物的测定 流动注射-分光光 度法》(HJ 823-2017)	流动注射-分光光度 法 BEF-10 流动注射分 析仪器	0.001mg/L
氟化物	《水质 氟化物的测定 离子选择电极法》 (GB/T 7484-1987)	离子选择电极/PHS-3E	0.05mg/L
氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ 535-2009	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.025mg/L
总氮	《水质 总氮的测定 碱性过硫酸钾消解紫外 分光光度法》HJ 636-2012	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.05mg/L
萘			0.2μg/L
薜			0.1μg/L
苯并[a]蒽			0.1μg/L
苯并[a]芘			$0.1 \mu g/L$
苯并[b]荧蒽			$0.1 \mu g/L$
苯并[k]荧蒽			$0.1 \mu g/L$
茚并[1,2,3-c,d]芘			$0.1 \mu g/L$
二苯并[a,h]蒽	 《水质 半挥发性有机物的测定 气相色谱	气相色谱-质谱联用	$0.2 \mu g/L$
苊烯	-质谱法》(DB4401/T 94-2020)	仪 Agilent 8860 GC /5977B GC/MSD	$0.2 \mu g/L$
苊		, , , , , , , , , , , , , , , , , , ,	$0.2 \mu g/L$
芴			$0.1 \mu g/L$
菲			$0.1 \mu g/L$
蒽			$0.1 \mu g/L$
荧蒽			0.1μg/L
芘			$0.1 \mu g/L$
苯并[g,h,i] 菲			$0.1 \mu g/L$
异佛尔酮			$0.2 \mu g/L$

4.4质量保证及质量控制

4.4.1 自行监测质量体系

自行监测工作过程中,严格按照《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)、《地下水环境监测技术规范》(HJ164-2020)、《土壤环境监测技术规范》(HJ/T166-2004)、《土壤质量土壤样品长期和短期保存指南》(GB/T32722-2016)、《环境监测分析方法标准制修订技术导则》(HJ168-2010)工作的要求开展全过程质量管理。

我公司将做好内部质控工作,内部质量控制措施等级分二级,一级质控为小组自审、二级质控为公司质控组内审。

公司组建质量控制人员队伍,明确人员分工,人员参加技术文件学习培训 后开展工作,制定包括信息采集、布点采样、样品保存和流转、样品分析测 试、质控实验室全过程的质控计划,内部质量控制工作与自行监测工作同步启 动,质量控制人员要对自行监测全过程进行资料检查和现场检查,及时、准确 地发现在监测工作中存在的各种问题,并进行相应的整改和复核。

4.4.2 监测方案制定的保证与控制

依据《重点行业企业用地调查样品采集保存和流转技术规定(试行)》、《土壤环境监测技术规范》(HJ/T166-2004)、《地下水环境监测技术规范》(HJ164-2020)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)的相关要求依次检查以下内容:

- (1) 采样方案的内容及过程记录表是否完整;
- (2) 采样点检查: 采样点是否与自行监测方案一致:
- (3) 土孔钻探方法: 土壤钻孔采样记录单的完整性,通过记录单及现场照片判定钻探设备选择、钻探深度、钻探操作、钻探过程防止交叉污染以及钻孔填充等是否满足相关技术规定要求;
- (4) 地下水采样井建井与洗井:建井、洗井记录的完整性,通过记录单及现场照片判定建井材料选择、成井过程、洗井方式等是否满足相关技术规定要求;
- (5) 土壤和地下水样品采集:土壤钻孔采样记录单、地下水采样记录单的 完整性,通过记录单及现场照片判定样品采集位置、采集设备、采集深度、采

集方式(非扰动采样等)是否满足相关技术规定要求;

- (6) 样品检查: 样品重量和数量、样品标签、容器材质、保存条件、保存 剂添加、采集过程现场照片等记录是否满足相关技术规定要求:
 - (7) 运输空白等质量控制样品的采集、数量是否满足相关技术规定要求;
- (8) 采样记录信息是否齐全。采样人员是否正确、完整地填写样品标签和 样品采集现场记录表。是否每个点位拍摄了采样现场点位情况,拍摄照片是否 清晰。

4.4.3 样品采集与分析的质量保证与控制

样品采集完成后,由采样员在样品瓶上标明样品编号等信息,并做好现场记录。所有样品采集后放入装有足够蓝冰的保温箱中,采用适当的减震隔离措施,保证运输过程中样品完好,当天运输回公司满足保存条件。

装运前采样人员现场逐项核对采样记录表、样品标签、采样点位图标记等,核对无误后分类装箱。采样人员现场填好样品流转单,同样品一起交给样品管理员。样品送回实验室后,样品管理员收到样品后即时核对采样记录单、样品交接单、样品标签,核对无误后将样品放入冷库待检。

按挥发性有机化合物检测要求,设置运输空白和进行运输过程的质量控制。

- (1) 每20个样品做1次室内空白试验。
- (2)连续进样分析时,每分析20个样品测定一次校准曲线中间浓度点,确认分析仪器校准曲线是否发生显著变化。
- (3)每个检测指标(除挥发性有机物外)均做平行双样分析。在每批次分析样品中,随机抽取5%的样品进行平行双样分析;当批次样品数≤20时,随机抽取2个样品进行平行双样分析。
- (4)当可获得与被测土壤或地下水样品基体相同或类似的有证标准物质时,在每批次样品分析时同步均匀插入有证标准物质样品进行分析。每批样品插入5%的有证标准物质样品,当批次样品数≤20时,插入2个有证标准物质样品。
- (5) 当没有合适的土壤或地下水基体有证标准物质时,通过基体加标回收率试验对准确度进行控制。每批次样品中,随机抽取5%的样品进行加标回收率

试验; 当批次样品数≤20时, 随机抽取2个样品进行加标回收率试验。

(6) 当方法标准要求进行有机污染物样品的替代物加标回收率试验时,应 严格按照方法标准的要求实施。

5 监测结果与评价

5.1土壤自行监测结果分析

现场钻探和土壤样品采集工作于2024年10月30日开展,地块内布设11个点位,共采集11个土壤样品,并进行pH、水分、镍、铜、铅、锌、氰化物、氟化物、VOCs(17项)、石油烃(C10-C40)、丙酮、异佛尔酮和多环芳烃(16项)的检测。

在地块内共布设11个点位,各点位采集1个土壤样品,共13个土壤样品,检测数据统计结果详见表 5-1。根据检测结果可知:

- ①pH值范围为8.11~11.8; 水分范围为5.0~17.6%。
- ②锌的含量范围为50~561mg/kg;铜的含量范围为11~1730mg/kg;铅的含量范围为44~370mg/kg;镍的含量范围为8~42mg/kg。所有项目含量均未超过《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中相应的第二类用地筛选值。
- ③氟化物和石油烃(C10~C40)均有检出。异佛尔酮、氰化物未检出。氟化物最大值688mg/kg,石油烃(C10~C40)最大值为214mg/kg,均未超过《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中相应的第二类用地筛选值。丙酮未检出。
- ④VOCs(17项)、多环芳烃(16项)中有除二氯甲烷外均未检出,二氯甲烷的最大检出值未超过《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中相应的第二类用地筛选值。

表 5-1 地块内土壤样品检测结果分析表

分析指标	单位	最小值	最大值	筛选值	样品数	检出数	检出率	超标数	超标率	检出限
水分	_	5.0	17.6	/	11	11	100%	/	0%	
pH 值	_	8.11	11.8	/	11	11	100%	/	0%	_
铜	mg/kg	11	1730	18000	11	11	100%	0%	0%	1 mg/kg
铅	mg/kg	44	370	800	11	11	100%	0%	0%	10 mg/kg
镍	mg/kg	8	42	900	11	11	100%	0%	0%	3 mg/kg
锌	mg/kg	50	561	35000	11	11	100%	0%	0%	1 mg/kg
氰化物	mg/kg	ND	ND	135	11	0	0%	0%	0%	0.01mg/kg
氟化物	mg/kg	470	688	16100	11	11	100%	0%	0%	125mg/kg
石油烃 (C ₁₀ -C ₄₀)	mg/kg	8	45	4500	11	11	100%	0%	0%	6mg/kg
氯乙烯	μg/kg	ND	ND	0.43	11	0	0%	0%	0%	1.0 μg/kg
二氯甲烷	μg/kg	ND	0.0092	616	11	11	100%	0%	0%	1.5 μg/kg
1,1-二氯乙烷	μg/kg	ND	ND	9	11	0	0%	0%	0%	1.2 μg/kg
1,1,1-三氯乙烷	μg/kg	ND	ND	840	11	0	0%	0%	0%	1.3 μg/kg
四氯化碳	μg/kg	ND	ND	2.8	11	0	0%	0%	0%	1.3 μg/kg
苯	μg/kg	ND	ND	4	11	0	0%	0%	0%	1.9 μg/kg
1,2-二氯乙烷	μg/kg	ND	ND	560	11	0	0%	0%	0%	1.3 μg/kg
三氯乙烯	μg/kg	ND	ND	2.8	11	0	0%	0%	0%	1.2 μg/kg
甲苯	μg/kg	ND	ND	1200	11	0	0%	0%	0%	1.3 μg/kg
1,1,2-三氯乙烷	μg/kg	ND	ND	2.8	11	0	0%	0%	0%	1.2 μg/kg
四氯乙烯	μg/kg	ND	ND	53	11	0%	0%	0%	0%	1.4 μg/kg

分析指标	单位	最小值	最大值	筛选值	样品数	检出数	检出率	超标数	超标率	检出限
1,1,1,2-四氯乙烷	μg/kg	ND	ND	10	11	0%	0%	0%	0%	1.2 μg/kg
乙苯	μg/kg	ND	ND	28	11	0%	0%	0%	0%	1.2 μg/kg
间,对-二甲苯	μg/kg	ND	ND	570	11	0%	0%	0%	0%	1.2 μg/kg
邻二甲苯	μg/kg	ND	ND	640	11	0%	0%	0%	0%	1.2 μg/kg
苯乙烯	μg/kg	ND	ND	1290	11	0%	0%	0%	0%	1.1 μg/kg
1,1,2,2-四氯乙烷	μg/kg	ND	ND	6.8	11	0%	0%	0%	0%	1.2 μg/kg
丙酮	μg/kg	ND	ND	25600	11	9%	82%	0%	0%	1.3 μg/kg
异佛尔酮	mg/kg	ND	ND	613	11	0%	0%	0%	0%	0.07 mg/kg
萘	mg/kg	ND	ND	70	11	0%	0%	0%	0%	0.09 mg/kg
苊烯	mg/kg	ND	ND	2060	11	0%	0%	0%	0%	0.09 mg/kg
苊	mg/kg	ND	ND	2120	11	0%	0%	0%	0%	0.1 mg/kg
芴	mg/kg	ND	ND	1410	11	0%	0%	0%	0%	0.08mg/kg
菲	mg/kg	ND	ND	1030	11	0%	0%	0%	0%	0.1mg/kg
蒽	mg/kg	ND	ND	10600	11	0%	0%	0%	0%	0.1 mg/kg
荧蒽	mg/kg	ND	ND	1410	11	0%	0%	0%	0%	0.2mg/kg
芘	mg/kg	ND	ND	1060	11	0%	0%	0%	0%	0.1mg/kg
苯并[a]蒽	mg/kg	ND	ND	15	11	0%	0%	0%	0%	0.1mg/kg
崫	mg/kg	ND	ND	1293	11	0%	0%	0%	0%	0.1mg/kg
苯并[b]荧蒽	mg/kg	ND	ND	15	11	0%	0%	0%	0%	0.2mg/kg
苯并[k]荧蒽	mg/kg	ND	ND	151	11	0%	0%	0%	0%	0.1mg/kg

分析指标	单位	最小值	最大值	筛选值	样品数	检出数	检出率	超标数	超标率	检出限
苯并[a]芘	mg/kg	ND	ND	1.5	11	0%	0%	0%	0%	0.1mg/kg
茚并[1,2,3-cd]芘	mg/kg	ND	ND	15	11	0%	0%	0%	0%	0.1mg/kg
二苯并[a,h]蒽	mg/kg	ND	ND	1.5	11	0%	0%	0%	0%	0.1mg/kg
苯并[g,h,i]菲	mg/kg	ND	ND	1030	11	0%	0%	0%	0%	0.1mg/kg

5.2地下水自行监测结果分析

本次监测中沿用2022年建立的3个地下水监测井和2个在历史自行监测项目中留下的地下水监测井,共采集了5个地下水样品,并进行pH、浊度、锌、氰化物、氟化物、石油烃(C10-C40)、丙酮、异佛尔酮和多环芳烃(16项)的检测,检测数据统计结果详见表5-3。根据检测结果可知:

pH值范围为7.4~8.0; 浑浊度范围为38~65。

锌检出的最高含量为212μg/L,镍检出的最高含量为5.35μg/L,铜检出的最高含量为22.8μg/L,均未超过《地下水质量标准》(GB/T 14848-2017)中相应的Ⅲ类地下水标准限值。

氰化物检出的最高含量为0.003mg/L,氨氮检出的最高含量为0.386mg/L,氟化物检出的最高含量为0.72mg/L,石油烃($C_{10}\sim C_{40}$)检出的最高含量为0.17mg/L,均未超过《地下水质量标准》(GB/T14848-2017)相应的III类地下水标准限值。

多环芳烃(16项)、丙酮、异佛尔酮均未检出。

表 5-2 地块内地下水样品检测结果分析表

监测项目	单位	样品数量	检测最小值	地下水杆品位 检测最大值 	超标样品数 量(个)	超标率 (%)	最大超标 倍数	III类地下水标准限值
浑浊度	NTU	5	38	65	5	100%	20.67	3
pH 值	无量纲	5	7.4	8	0	0	-	6.5-8.5
石油烃 (C ₁₀ ~C ₄₀)	mg/L	5	0.02	0.17	0	0	0	0.548
锌	μg/L	5	9	212	0	0	0	1000
镍	μg/L	5	0.31	5.35	0	0	0	20
铜	μg/L	5	3.17	22.8	0	0	0	100
总氮	mg/L	5	1.05	2.08	0	0	0	-
氨氮	mg/L	5	0.101	0.386	0	0	0	0.50
氟化物	mg/L	5	0.17	0.72	0	0	0	1
氰化物	mg/L	5	ND	0.003	0	0	0	0.05
丙酮	mg/L	5	ND	ND	0	0	0	-
萘	mg/L	5	ND	ND	0	0	0	0.1
苊烯	mg/L	5	ND	ND	0	0	0	-
苊	mg/L	5	ND	ND	0	0	0	-
芴	mg/L	5	ND	ND	0	0	0	-
菲	mg/L	5	ND	ND	0	0	0	-
蒽	mg/L	5	ND	ND	0	0	0	1.8
荧蒽	mg/L	5	ND	ND	0	0	0	0.24
芘	mg/L	5	ND	ND	0	0	0	-
崫	mg/L	5	ND	ND	0	0	0	-
苯并[a]蒽	mg/L	5	ND	ND	0	0	0	-
苯并[b]荧蒽	mg/L	5	ND	ND	0	0	0	0.004
苯并[k]荧蒽	mg/L	5	ND	ND	0	0	0	-

监测项目	单位	样品数量	检测最小值	检测最大值	超标样品数 量(个)	超标率 (%)	最大超标 倍数	III类地下水标准限值
苯并[a]芘	mg/L	5	ND	ND	0	0	0	0.00001
茚并[1,2,3-cd]芘	mg/L	5	ND	ND	0	0	0	-
二苯并[a,h]蒽	mg/L	5	ND	ND	0	0	0	-
苯并[g,h,i] 菲	mg/L	5	ND	ND	0	0	0	-
异佛尔酮	mg/L	5	ND	ND	0	0	0	-

5.3 历次检测结果对比情况

(1) 土壤检测结果对比

本次土壤检测结果与 2023 年土壤监测指标对比(详见表 5-4),部分特征污染物指标(氟化物、二氯甲烷、丙酮)比去年的检测结果低,其余(pH、铜、铅、镍、锌等)大部分的指标总体高于 2023 年的检测结果。除二氯甲烷以外的 VOCs 及多环芳烃仍保持未检出。

表 5-4 地块内土壤样品历次检测结果对比情况表

指标	单位	本次最大值	2023 年最大值
pH 值	_	11.8	10.79
铜	mg/kg	1730	417
铅	mg/kg	370	115
镍	mg/kg	42	25
锌	mg/kg	561	247
氰化物	mg/kg	ND	ND
氟化物	mg/kg	688	699
石油烃 (C ₁₀ -C ₄₀)	mg/kg	45	214
氯乙烯	μg/kg	ND	ND
二氯甲烷	μg/kg	0.0092	0.0656
1,1-二氯乙烷	μg/kg	ND	ND
1,1,1-三氯乙烷	μg/kg	ND	ND
四氯化碳	μg/kg	ND	ND
苯	μg/kg	ND	ND
1,2-二氯乙烷	μg/kg	ND	ND
三氯乙烯	μg/kg	ND	ND
甲苯	μg/kg	ND	ND
1,1,2-三氯乙烷	μg/kg	ND	ND
四氯乙烯	μg/kg	ND	ND
1,1,1,2-四氯乙烷	μg/kg	ND	ND
乙苯	μg/kg	ND	ND
间,对-二甲苯	μg/kg	ND	ND
邻二甲苯	μg/kg	ND	ND
苯乙烯	μg/kg	ND	ND
1,1,2,2-四氯乙烷	μg/kg	ND	ND
丙酮	μg/kg	ND	0.0768
异佛尔酮	mg/kg	ND	ND
萘	mg/kg	ND	ND
苊烯	mg/kg	ND	ND

指标	单位	本次最大值	2023 年最大值
苊	mg/kg	ND	ND
芴	mg/kg	ND	ND
菲	mg/kg	ND	ND
蒽	mg/kg	ND	ND
荧蒽	mg/kg	ND	ND
芘	mg/kg	ND	ND
苯并[a]蒽	mg/kg	ND	ND
崫	mg/kg	ND	ND
苯并[b]荧蒽	mg/kg	ND	ND
苯并[k]荧蒽	mg/kg	ND	ND
苯并[a]芘	mg/kg	ND	ND
茚并[1,2,3-cd]芘	mg/kg	ND	ND
二苯并[a,h]蒽	mg/kg	ND	ND
苯并[g,h,i]菲	mg/kg	ND	ND

(2) 地下水检测结果对比

本次地下水检测结果与 2023 年地下水监测指标超过地下水III类标准限值对比(详见表 5-5),除了部分水井指标 pH、氟化物比去年的检测结果低以外,其余特征污染物(镍、铜、锌、氰化物等)均高于 2023 年的检测结果;丙酮、多环芳烃及异佛尔酮仍保持未检出。

表 5-5 地块内地下水样品历次检测结果对比情况表

指标	单位	本次最大值	2023 年最大值
浑浊度	NTU	65	46
pH 值	_	8	8.5
石油烃(C ₁₀ -C ₄₀)	mg/L	0.17	0.38
锌	μg/L	212	3.6
镍	μg/L	5.35	0.19
铜	μg/L	22.8	ND
氰化物	mg/L	0.72	ND
氟化物	mg/L	0.003	0.56
丙酮	mg/L	ND	ND
萘	mg/L	ND	ND
苊烯	mg/L	ND	ND
苊	mg/L	ND	ND
芴	mg/L	ND	ND
菲	mg/L	ND	ND
蒽	mg/L	ND	ND

指标	单位	本次最大值	2023 年最大值
荧蒽	mg/L	ND	ND
芘	mg/L	ND	ND
苯并[a]蒽	mg/L	ND	ND
崫	mg/L	ND	ND
苯并[b]荧蒽	mg/L	ND	ND
苯并[k]荧蒽	mg/L	ND	ND
茚并[1,2,3-c,d]芘	mg/L	ND	ND
苯并[g,h,i]菲	mg/L	ND	ND
二苯并[a,h]蒽	mg/L	ND	ND
苯并[g,h,i] 菲	mg/L	ND	ND
异佛尔酮	mg/L	ND	ND

6 结论与建议

6.1结论

(1) 土壤样品检测结果汇总

本次监测共采集11个土壤样品,并进行pH、水分、镍、铜、铅、锌、氰化物、氟化物、VOCs(17项)、石油烃(C10-C40)、丙酮、异佛尔酮和多环芳烃(16项)的检测。

对于地块内的11个土壤样品,铜、铅、镍、锌、氟化物、丙酮、二氯甲烷和石油烃(C10~C40)均有检出,但检出值均未超过GB36600-2018中的第二类用地筛选值。

(2) 地下水样品检测结果汇总

本次监测在5个地下水中各采集1个地下水样品,均进行了pH、浊度、锌、氰化物、氟化物、石油烃(C10-C40)、丙酮、异佛尔酮和多环芳烃(16项)的检测,本次检测中仅有锌、氟化物、氰化物和石油烃(C10~C40)被检出,均未超过《地下水质量标准》(GB/T14848-2017)相应的III类地下水标准限值。其余指标均未被检出。

6.2建议

- (1)建议生产区、废水处理站、化学品仓库、危废贮存区、生化处理等重点区域开展日常巡查,如发现渗漏的立即进行整改。
- (2)加强生产经营过程中的监管和本次污染识别所识别的重点关注区域的 日常巡查,确保及时发现问题,避免发生危险化学品的跑、冒、滴、漏等可能 污染士壤事件的发生;
- (3) 定期开展土壤环境污染隐患的自查自改工作,避免土壤、地下水环境污染突发事件的发生;
- (4)加强土壤及地下水的长期监测,并注意比对分析总结每年检测数据的变化情况

附件一地下水检测报告(多环芳烃及异佛尔酮)

检测报告

客户	广州添利电子科技有限公司	实验室	苏伊士环境检测技术 (广州)有限公司	页码	第1页共4页
联系人		联系人	朱秀艳	报告编号	GZ24A0971
地址	-	地址	广州市黄埔区科学城伴河路 96 号三栋二层	修改版本	OLL WINE !
				监管系统编号	
电子邮箱	A. T.	电子邮箱	xluyan.zhu@suez.com	样品接收日期	2024-11-06
电话	15011907351	电话	(20)	起始分析日期	2024-11-06
传真	(보)	传真	+86 20 3160 6105	报告发行日期	2024-12-03
项目	广州添利电子科技有限公司 2024 年土壤及地下水自行			接收样品数	7
	监测项目				
				报告样品数	7

此报告经下列人员签名

吴苑维 2024-11-19 龙弈诗 2024-11-20 王晓丽 2024-12-03

苏伊士环境检测技术(广州)有限公司

 页码 :第2页 共4页

客户 :广州添利电子科技有限公司

报告编号 :GZ24A0971

注意事项:

- 检测报告未加盖检测专用章无效;无审核人或批准人签字无效;涂改、缺页无效;未经本公司书面批准,本报告不得部分复印、摘录或篡改。此前发出的所有版本,自本版报告签发之日起失 效。
- 根据客户的检测要求,我们作出此报告。如由于无法控制因素导致检测质量的变化,本公司将不为此承担任何责任。
- 公司仅为检测合约方提供服务,并承诺为其保守秘密。
- 委托人对检测结果如有异议,请于收到检测报告之日起 15 日内向我司书面提出,否则视为接受检测报告。
- 检测余样如无约定将依据本公司规定对其保存和处置。
- 此报告分析完成日期是: 2024-11-18
- 缩略语: LOR = 检出限; CAS = 化学文摘号码。
- "ND"、"[检出限数值]L"表示结果为未检出。

样品的分析与报告仅基于收到的样品。

页码 :第3页 共4页

客户 :广州添利电子科技有限公司

报告编号 :GZ24A0971

样品类型:水			客户样品编号标识	GW2	GW4	GW4-P	GW3	GW5
			采样日期/时间	-		-	-	
			实验室样品编号标识	GZ24A0971-001	GZ24A0971-002	GZ24A0971-003	GZ24A0971-004	GZ24A0971-005
	CAS 号	LOR	单位	检测结果	检测结果	检测结果	检测结果	检测结果
半挥发性有机物 - 多环芳烃类(PAHs): HJ 478-2009 水质 多环芳烃的测	定 液液萃	取和固相萃取高效液	相色谱法					
蒙 9	91-20-3	0.011	µg/L	ND	ND	ND	ND	ND
苯并(a)蒽	6-55-3	0.007	μg/L	ND	ND	ND	ND	ND
趙 21	18-01-9	0.008	μg/L	ND	ND	ND	ND	ND
苯并(b)荧蒽	5-99-2	0.003	µg/L	ND	ND	ND	ND	ND
苯并(k)荧蒽	7-08-9	0.004	µg/L	ND	ND	ND	ND	ND
苯并(a)芘	50-32-8	0.004	µg/L	ND	ND	ND	ND	ND
二苯并(a,h)蒽	3-70-3	0.003	μg/L	ND	ND	ND	ND	ND
茚并(1,2,3-cd)芘	3-39-5	0.003	μg/L	ND	ND	ND	ND	ND
半挥发性有机物 - 硝基芳烃和酮类: USEPA 8270E Rev.6(2018.6) 气相	色谱-质谱:	法测定半挥发性有机化	公合物					
异佛尔酮 7	8-59-1	0.31	μg/L	ND	ND	ND	ND	ND

页码 :第4页 共4页

客户 :广州添利电子科技有限公司

报告编号 :GZ24A0971

样品类型:水			客户样品编号标识	GW1	QKB	er	770	
			采样日期/时间	(57 7).		-		
			实验室样品编号标识	GZ24A0971-006	GZ24A0971-007		-	
	CAS 号	LOR	单位	检测结果	检测结果			- 77
半挥发性有机物 - 多环芳烃类(PAHs): HJ 47	8-2009 水质 多环芳烃的测定 液液萃取	和固相萃取高效	效液相色谱法					
蒙	91-20-3	0.011	μg/L	ND	ND.		-	
苯并(a)蒽	56-55-3	0.007	μg/L	ND	ND	2	=	5
	218-01-9	0.008	μg/L	ND	ND	=	=	75
苯并(b)荧蒽	205-99-2	0.003	µg/L	ND	ND	=	=	75
苯并(k)荧蒽	207-08-9	0.004	µg/L	ND	ND		=	75
苯并(a)芘	50-32-8	0.004	μg/L	ND	ND	=		570
二苯并(a,h)蒽	53-70-3	0.003	µg/L	ND	ND	<u> </u>		=
茚并(1,2,3-cd)芘	193-39-5	0.003	μg/L	ND	ND	-		- 55
半挥发性有机物 - 硝基芳烃和酮类:USEPA 8	8270E Rev.6(2018.6) 气相色谱-质谱法	测定半挥发性有	机化合物					
异傳尔酮	78-59-1	0.31	μg/L	ND	ND		=	-

报告结束

附件二土壤及地下水(pH、浊度、锌等)检测报告

广州中德环境技术研究院有限公司

检测报告

报告编号:	ZD2024-E042
检测类别:	委托检测
项目名称:	广州添利电子科技有限公司土壤和地下水自行监测
委托单位:	广州添利电子科技有限公司
报告日期:	2024年12月04日

编制:李秋霞李秋霞

审核: 粪志勇 主 去 真

签 发:赵秋香 Catet

报告声明

- 1. 本报告无报告编写、审核、签发人签字无效,报告涂改无效。
- 2. 本报告无本机构检验检测专用章、骑缝章及 🚾 章无效。
- 3. 本机构保证检测的科学性、公正性和准确性,对检测数据负责, 并对委托单位所提供的样品和技术资料保密。
- 4. 本机构的采样和检验检测程序按照检验检测相关技术标准和技术 规范及本机构的程序文件和作业指导书执行。
- 5. 检测委托方如对检测报告有疑问,须于收到本检测报告之日起十 日内向本机构提出或查询,来函或来电请注明报告编号。
- 6. 未经本单位书面批准,不得部分复制本报告和用于广告宣传。

本机构通讯资料:

联系地址:广州市黄埔区果园二路1号摩登大厦401房

邮政编码: 510765

 邮
 箱: 928246749@qq. com

 受理电话: 020-32038973

 网
 址: www.gzzdep. com

第 2 页, 共 12 页

一、检测目的

受广州添利电子科技有限公司的委托,对广州添利电子科技有限公司土壤和地下水自 行监测项目的土壤和地下水进行现场检测及采样检测。

二、检测概况

表 1 基本信息一览表

委托单位	广州添利电子科技有限公司
来样方式	☑现场检测
采样人员	黄志军、苏楚琪、黎国政
采样日期	2024年10月30日-11月04日
检测人员	皮婷婷、刘学军、黄智楷、陈炫烨、萧伟玲 粲创鑫、李玉莹、林威、傅双鹰、赵思龙
分析日期	2024年10月30日-11月29日

第 3 页, 共 12 页

三、检测结果

表2 土壤样品检测结果(理化和重金属指标,共8项)

治療早期	父验室样品编		检测项	检测项目及检测结果(单	(单位:除pH值	除 pH 值无量纲、水分%,	,其余单位均为 mg/kg)	y mg/kg)	
	各	Hd	水分	部	铅	微	蓉	氰化物	氟化物
S1-1	TR24-E042-1	8.11	8.6	1.78×10 ³	365	40	195	QN.	505
S1-2	TR24-E042-3	8.30	5.0	168	157	- 23	374	S S	583
S1-3	TR24-E042-4	10.53	12.4	17	52	17	114	Q.	544
S1-4	TR24-E042-5	11.18	6.7	184	45	∞	50	QN.	534
S1-5	TR24-E042-6	8.63	11.9	162	110	20	109	QN.	494
S1-6	TR24-E042-7	10.69	16.5	96	09	16	73	QN	611
S1-7	TR24-E042-8	10.01	17.6	46	59	21	70	ND	536
81-8	TR24-E042-9	11.05	6.4	06	44	10	74	Q.	552
81-9	TR24-E042-10	11.22	5.7	12	53	10	73	QN	654
S1-10	TR24-E042-12	11.17	5.8	26	59	=	64	QN.	471
S1-11	TR24-E042-13	10.90	15.6	32	68	14	160	QN	693
备注	"ND"表示检测结果低于方法检出限	民低于方法检出	服。						

第 4 页, 共 12 页

报告编号: ZD2024-E042

表3 土壤样品检测结果(SVOCs和石油烃指标,共9项)

	47日 計事が				检测项目及检测结果		(单位: mg/kg)			
采样点编号	头巡坐杆曲狮号	摐		靵	苯并[b]荧 蒽	苯并[k]荧 蘑	秦并[a]茂	茚并[1, 2, 3-cd]莊	二苯并[a,h]	石油格 (Clo-C4o
S1-1	TR24-E042-1	ND	QN.	ND	ND	N	2	ND	QN	22
S1-2	TR24-E042-3	ND	QN	ND	ND	ND	QN.	QN.	QN.	45
S1-3	TR24-E042-4	ND	ND	ND	ND	ND	ND	ND	QN	1
S1-4	TR24-E042-5	ND	ND	ND	ND	QN	QN	QN	QN	29
S1-5	TR24-E042-6	ND	QN	QN	ND	QN	QN.	QN	QN	12
S1-6	TR24-E042-7	ND	ND	ND	ND	QN	ND	QN	QN	10
S1-7	TR24-E042-8	ND	ND	ND	QN	QN	ND	QN.	QN	∞
S1-8	TR24-E042-9	ND	N ON	QN	QN	ND	ND	ON	ND	13
81-9	TR24-E042-10	QN	ND	ND	ND	ND	ND	ND	ND	6
S1-10	TR24-E042-12	QN	QN	N	N ON	ND	ND	QN	QN	10
S1-11	TR24-E042-13	QN	ND	ND	ND	QN	ND	Q	ND	81
名注	"ND"表示检测结果低于方法检出限。	果低于方法核	沙出限。							

第5页,共12页

第6页, 共12页

2

ND

2

S

N N

S

S

2

TR24-E042-13

S1-11

备注

S1-10

"ND"表示检测结果低于方法检出限。

	*并[g,h,i] - 北	QN	N S	Q.	Ð	8	S	S S	N N	N N	QN	
	紐	N N	ND	ND	QN	S	S	S S	N N	ND	S	
i: mg/kg)	茨藍	ND	ND	N N	S S	N ON	N	ND	QN	N N	S	
验测结果(单位:	掘	ND	ND	ND	ND	QN	N	ND	ON	ND	ND	
检测项目及检测结果	1#	ND	ND	QN	ND	ND	ND	QN	QN	ND	QN	
	撇	QN	ND	ND	QN	QN	ND	ND	QN	ND	QN	
	草	ND	ND	ND	ND	N	ND	QN	QN	ND	ND	
	超	Q.	N Q	ND ND	ND	ND	ND QN	ND	ND	ND	ND	
李 验 章 样 品 编	- E	TR24-E042-1	TR24-E042-3	TR24-E042-4	TR24-E042-5	TR24-E042-6	TR24-E042-7	TR24-E042-8	TR24-E042-9	TR24-E042-10	TR24-E042-12	

S1-5

S1-6 S1-8 S1-8 S1-9

报告编号: ZD2024-E042

采样点编号

SI-1 SI-2 SI-3

报告编号: ZD2024-E042

表 4 土壤样品检测结果 (VOCs 指标, 共10 项)-1

5			0 0			
TR24-E042-1 ND ND ND ND TR24-E042-3 ND ND ND 7.9 TR24-E042-4 ND ND 7.7 7.9 TR24-E042-5 ND ND ND ND TR24-E042-6 ND ND ND ND TR24-E042-7 ND ND ND 6.5	源	1.1-二氮 乙烷	顺式-1,2- 二氯乙烯	氣份	1,1,1-三億 乙落	四氣化碳
TR24-E042-5 ND ND ND ND ND 7.9 TR24-E042-5 ND ND ND 7.7 TR24-E042-6 ND ND ND ND 7.7 TR24-E042-7 ND ND ND ND 6.5	ND ND	ND	ND	ND	ND	ND
TR24-E042-4 ND ND ND 7.9 TR24-E042-5 ND ND ND 7.7 TR24-E042-6 ND	ND ND	ND	ND	ND	ND	QN
TR24-E042-5 ND ND ND 7.7 TR24-E042-6 ND ND ND ND ND TR24-E042-7 ND ND ND 6.5	7.9 ND	ND	ND	ND	ND	ND
TR24-E042-6 ND ND ND ND ND TR24-E042-7 ND ND ND 6.5	7.7 ND	ND	ND	ND	ND	ND
TR24-E042-7 ND ND ND 6.5	ND ND	QN	ND	ND	QN	ND
CO CONTRACTOR CONTRACT	ON 2.9	ND	R	ND	ND	N
	9.2 ND	ND	ND	QN	ND	ND
SI-8 TR24-E042-9 ND ND ND 5.4	5.4 ND	ND	ND	QN	ND	N N
SI-9 TR24-E042-10 ND ND ND ND	ND ND	ND	ND	QN	ND	QN
S1-10 TR24-E042-12 ND ND ND 2.0	2.0 ND	ND	ND	ND	ND	QN
S1-11 TR24-E042-13 ND ND ND ND	ND ND	ND	QN	QN	ON	QN
备注 "ND"表示检测结果低于方法检出限。						

第7页, 共12页

报告编号: ZD2024-E042

表5 土壤样品检测结果 (VOCs指标, 共9项)-2

	安心安保卫编				检测项目及	检测项目及检测结果(单位: pg/kg)	位: µg/kg)			
采样点编号	ASE THE	1,2-二氟乙 烷	三氮乙烯	1,2-二氯丙 烷	1,1,2-三館 乙舘	四氮乙烯	1,1,1,2-四 氮乙烷	1.1,2,2-四 無乙烷	1,2,3-三億 丙施	内剛
S1-1	TR24-E042-1	ND	Q.	QN.	ND	QN	ND	ND	ND	ON.
S1-2	TR24-E042-3	ND	ND	ND	ND	QN	QN	ND	QN.	S
S1-3	TR24-E042-4	ND	ND	ND	ND	QN	ND	N ON	N ON	S
S1-4	TR24-E042-5	ND	ND	ND	ND	ND	QN	QN.	QN.	N
S1-5	TR24-E042-6	N N	ND	QN.	QN	ND	QN	QN.	QN	2
9-18	TR24-E042-7	ND	ND	N Q	QN	ND	ND	ND	N	2
S1-7	TR24-E042-8	ND	ND	ND	ND	ND	Q.	N	S	8
SI-8	TR24-E042-9	ND	QN.	ND	ND	ND	QV.	Q.	S	QN
81-9	TR24-E042-10	ND	N N	QN	QN	ND	Q.	Ð	S	N
S1-10	TR24-E042-12	ND	ND	ND	ND	ND	ND	ND QN	Q.	N N
S1-11	TR24-E042-13	N N	QN	ND	QN	ND	N N	QN.	R	N N
备注	"ND"表示检测结果低于方法检出限	果低于方法检息	出限。							

第8页, 共12页

	采样点编号		GW1	GW2	GW3	GW4	GW5
	实验室样品编	号	DXS24- E042-1	DXS24- E042-2	DXS24- E042-3	DXS24- E042-4	DXS24- E042-6
序号	检测项目	计量单位			检测结果		
1	рН	无量纲	7.4	7.8	7.8	7.9	8.0
2	浊度	NTU	65	58	55	44	38
3	锌	μg/L	146	20.4	13.1	10.0	212
4	氟化物	mg/L	0.17	0.24	0.18	0.19	0.72
5	氰化物	mg/L	ND	ND	ND	ND	ND
6	可萃取性石油烃 (C ₁₀ -C ₄₀)	mg/L	0.17	0.07	0.06	0.05	0.02
7	丙酮	mg/L	ND	ND	ND	ND	ND
备注	"ND"表示检测结果	低于方法检出	识。				

第 9 页, 共 12 页

四、检测方法、仪器及方法检出限

表 7 检测方法、仪器设备及方法检出限一览表

序号	类别	检测项目	检测方法	仪器设备名称及编号	检出限
1	土壤	pH值	《土壤 pH 值的测定 电位法》 HJ 962-2018	FE28 pH t† ZDSB0321	1
2	土壤	水分	《土壤 干物质和水分的测定 重量法》 HJ 613-2011	JM-A2002 电子天平 ZDSB0179	1
3	土壤	铜			l mg/kg
4	土壤	铅	《土壤和沉积物 铜、锌、铅、镍、 铬的测定 火焰原子吸收分光光	GGX-600	10mg/kg
5	土壤	镍	度法》 HJ 491-2019	火焰原子吸收分光光度计 ZDSB0008	3mg/kg
6	土壌	韓	113 471-2019		1mg/kg
7	土壤	氰化物	《土壤 氰化物和总氰化物的测定 分光光度法》 HJ 745-2015	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.01mg/kg
8	土壤	氟化物	《土壤质量 氟化物的测定 离子 选择电极法》 GB/T 22104-2008	PXSJ-216F 离子计 ZDSB0262	125mg/kg
9	土壤	石油烃 (C ₁₀ -C ₄₀)	《土壤和沉积物 石油烃 (C ₁₀ -C ₄₀) 的测定气相色谱法》 HJ 1021-2019	TRACE1300 气相色谱仪 ZDSB0196	6mg/kg
10	土壤	萘			0.09mg/kg
11	土壤	苯并[α]蒽			0.1mg/kg
12	土壤	䓛			0.1mg/kg
13	土壤	苯并[b]荧蒽			0.2mg/kg
14	土壤	苯并[k]荧蒽			0.1mg/kg
15	土壤	苯并[α]芘			0.1mg/kg
16	土壤	茚并[1,2,3-cd]芘	《土壤和沉积物 半挥发性有机	Trace1300+ISQ7000	0.1mg/kg
17	土壤	二苯并[a,h]蒽	物的测定 气相色谱-质谱法》 HJ 834-2017	气相质谱联用仪 ZDSB0006	0.1mg/kg
18	土壤	苊烯			0.09mg/kg
19	土壤	苊			0.1mg/kg
20	土壤	芴			0.08mg/kg
21	土壤	菲	TAMES THE		0.1mg/kg
22	土壤	蔥			0.1mg/kg
23	土壤	荧蒽			0.2mg/kg

第 10 页, 共 12 页

报告编号: ZD2024-E042

序号	类别	检测项目	检测方法	报告编号: ZD203 仪器设备名称及编号	检出限
24	土壤	芘	《土壤和沉积物 半挥发性有机 Trance1300+ISQ70		0.1mg/kg
25	土壌	苯并[g,h,i]非		Trance1300+ISQ7000 气相质谱联用仪	0.1mg/kg
26	土壤	异佛尔酮	TATALOG THE DAY OF THE PARTY OF	0.07mg/kg	
27	土壤	氯甲烷			1.0µg/kg
28	土壤	氯乙烯			1.0µg/kg
29	土壌	1,1-二氯乙烯	-		1.0µg/kg
30	土壤	二氯甲烷			1.5µg/kg
31	土壤	反式-1,2-二氯乙烯	-		1.4µg/kg
32	土壤	1,1-二氯乙烷	-		1.2µg/kg
33	土壤	顺式-1,2-二氯乙烯			1.3µg/kg
34	土壤	氯仿	2		1.1µg/kg
3.5	土壌	1,1,1-三氯乙烷	《土壤和沉积物 挥发性有机物	TRACE1300+ISQ7000 气相色谱质谱联用仪 ZDSB0198	1.3µg/kg
36	土壌	四氯化碳	- 的測定 吹扫捕集/气相色谱-质 谱法》		1.3μg/kg
37	土壤	1,2-二氯乙烷	НЈ 605-2011		1.3μg/kg
38	土壤	三氯乙烯			1.2μg/kg
39	土壤	1,2-二氯丙烷			1.1µg/kg
40	土壤	1,1,2-三氟乙烷			1.2µg/kg
41	土壤	四氯乙烯			1.4µg/kg
42	土壤	1,1,1,2-四氯乙烷			1.2μg/kg
43	土壤	1,1,2,2-四氯乙烷			1.2μg/kg
44	土壤	1,2,3-三氯丙烷			1.2μg/kg
45	土壤	丙酮			1.3µg/kg
46	地下水	pH 值	《水质 pH 值的测定 电极法》 HJ 1147-2020	DZB-712F 水质测定仪 ZDSB0332	
47	地下水	浊度	《水质 浊度的测定 浊度计法》 HJ 1075-2019	WZB-175 便携式浊度计 ZDSB0333	0.3NTU
48	地下水	锌	《水质 65 种元素的测定 电感 iCAP RQ		0.67μg/L
49	地下水	可萃取性石油烃 (C10-C40)	《水质 可萃取性石油烃 (C ₁₀ -C ₄₀) 的测定 气相色谱法》 HJ 894-2017	TRACE1300 气相色谱仪 ZDSB0196	0.01mg/L
50	地下水	丙酮	《水质 甲醇和丙酮的测定 顶空 气相色谱法》 HJ 895-2017	TRACE1300 气相色谱仪 ZDSB0196	0.01mg/L

第 11 页, 共 12 页

报告编号: ZD2024-E042

				7区口 5冊 与; ZD2024-E042		
序号	类别	检测项目	检测方法	仪器设备名称及编号	检出限	
51	地下水	氟化物	《水质 氟化物的测定 离子选择 电极法》 GB/T 7484-19887	PXSJ-216F 离子计 ZDSB0262	0.05mg/L	
52	地下水	氰化物	《水质 氰化物的测定 流动注射 -分光光度法》 - HJ 823-2017	BEF-10 流动注射分析仪器 ZDSB0229	0.001mg/L	

报告结束

第 12 页, 共 12 页

广州中德环境技术研究院有限公司

检测报告

 报告编号:
 ZD2024-E047

 检测类别:
 委托检测

 广州添利电子科技有限公司土壤和地下水自行项目名称:
 监测

 委托单位:
 广州添利电子科技有限公司

报告日期: 2025年01月14日

编制: 李秋霞 学秋度

审核:彭梓超 彭梓起

签 发: 赵秋香 (****

广州中德环境技术研究院有限公司 (检验检测专用章)

第1页,共5页

报告声明

- 1. 本报告无报告编写、审核、签发人签字无效,报告涂改无效。
- 2. 本报告无本机构检验检测专用章、骑缝章及 🚾 章无效。
- 3. 本机构保证检测的科学性、公正性和准确性,对检测数据负责, 并对委托单位所提供的样品和技术资料保密。
- 4. 本机构的采样和检验检测程序按照检验检测相关技术标准和技术 规范及本机构的程序文件和作业指导书执行。
- 5. 检测委托方如对检测报告有疑问,须于收到本检测报告之日起十 日内向本机构提出或查询,来函或来电请注明报告编号。
- 6. 未经本单位书面批准,不得部分复制本报告和用于广告宣传。

本机构通讯资料:

联系地址:广州市黄埔区果园二路1号摩登大厦401房

邮政编码: 510765

邮 箱: 928246749@qq.com 受理电话: 020-32038973 网 址: www.gzzdep.com

第 2 页, 共 5 页

一、检测目的

受广州添利电子科技有限公司的委托,对广州添利电子科技有限公司土壤和地下水自行监测项目的 地下水进行现场检测及采样检测。

二、检测概况

表1基本信息一览表

委托单位	广州添利电子科技有限公司			
委托单位地址	广州市白云区钟落潭镇良田管理区良沙路洪桂园			
来样方式	口现场检测			
采样人员	方超群、甘宗旭			
采样时间	2024年12月30日			
检测人员	傅双鹰、皮婷婷			
分析时间	2024年12月31日-2025年01月02日			

第 3 页, 共 5 页

报告编号: ZD2024-E047

三、检测结果

表 2 地下水样品检测结果

采样点编号 实验室样品编号		GW1	GW2	GW3	GW4	GW5	
		DXS24- E047-1	DXS24- E047-2	DXS24- E047-3	DXS24- E047-4	DXS24- E047-6	
序号	检测项目	计量 单位			检测结果		
1	总氮	mg/L	1.28	1.33	1.44	1.05	2.08
2	氨氮	mg/L	0.171	0.211	0.386	0.203	0.101
3	镍	μg/L	1.52	5.35	0.79	2.61	0.31
4	铜	μg/L	4.23	22.8	3.17	7.38	1.74

第4页,共5页

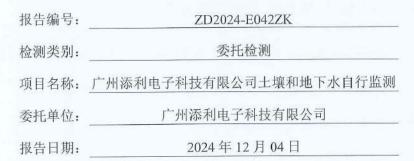
报告编号: ZD2024-E047

四、检测方法、仪器及方法检出限

表 3 检测方法、仪器设备及方法检出限一览表

序号	类别	检测项目	检测方法	仪器设备名称及编号	检出限
1	地下水	铜	《水质 65 种元素的测定 电感耦	iCAP RQ	0.08µg/L
2	地下水	镍	合等离子体质谱法》 HJ 700-2014	电感耦合等离子质谱仪 ZDSB0226	0.06μg/L
3	地下水	氨氮	《水质 氦氮的测定 纳氏试剂分 光光度法》 HJ 535-2009	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.025mg/L
4	地下水	总氦	《水质 总氮的测定 碱性过硫酸 钾消解紫外分光光度法》 HJ 636-2012	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.05mg/L

报告结束


第 5 页, 共 5 页

附件三土壤及地下水质控报告

广州中德环境技术研究院有限公司

质 控 报 告

编制: 李秋霞 李钟霞

审核: 粪志勇 至之虱

广州中德环境技术研究院有限公司 (检验检测专用章)

告 声 :

报告声明

- 1 本公司保证检测的公正、准确、科学和规范,对检测的数据负责,并对委托单位所提供的样品和技术资料保密。
- 2本公司的采样和检测按国家相关标准、技术规范和本公司的程序文件规定严格执行。
- 3 本报告涂改无效,无编写、审核、签发人签字无效。
- 4 未经本公司书面批准,不得部分复制本报告。
- 5 检测委托方如对本质控报告有疑问,须于收到本质控报告之日起
- 十日内向本机构提出或查询,来函或来电请注明报告编号。
- 6 本报告不具有对社会的证明作用。

本机构通讯资料:

联系地址:广州市黄埔区果园二路1号摩登大厦401房

邮政编码: 510765

邮 箱: 928246749@qq.com 受理电话: 020-32038973 网 址: www.gzzdep.com

第 2 页, 共 45 页

目 录

-,	项目概况	5
Ξ.,	质量控制过程	5
2.1	采样和检测人员资质情况	.5
2.2	仪器设备一览表	.5
2.3	检测方法、主要分析仪器及检出限	.6
2.4	样品的采集、保存、流转、制备和预处理	0
	2.4.1 样品的采集和保存	0
	2.4.2 样品的流转	4
	2.4.3 土壤样品的制备	6
	2.4.4 样品的分析前处理/预处理	17
2.5	样品时效性统计2	20
	2.5.1 土壤样品时效性统计	20
	2.5.2 地下水样品时效性统计	21
Ξ,	质量控制结果汇总	22
3.1	土壤样品质控结果汇总	22
3.2	地下水样品质控结果汇总	24
四、	实验室质量控制数据统计表	27
4.1	土壤样品质量控制数据统计表	27
	4.1.1 土壤标准样品分析质量控制结果	27
	4.1.2 土壤样品全程序空白分析质量控制结果	28
	4.1.3 土壤样品运输空白分析质量控制结果	29
	4.1.4 土壤样品实验室空白分析质量控制结果	30
	4.1.5 土壤样品现场平行分析质量控制结果	32
	4.1.6 土壤样品实验室平行分析质量控制结果	35
	4.1.7 土壤样品加标回收质量分析控制结果	37
	4.1.8 土壤样品 SVOCs 替代物加标回收质量控制结果	39
	4.1.9 土壤样品 VOCs 替代物加标回收质量控制结果	
	4.1.10 土壤样品曲线中间点校准质量控制结果	41
	第 3 页, 共 45 页	

报告编号: ZD2024-E042ZK

 2 地下水样品质量控制数据统计表	 43
4.2.1 地下水标准样品分析质量控制结果	
4.2.2 地下水样品全程序空白分析质控制结果	 43
4.2.3 地下水样品实验室空白分析质量结果	 43
4.2.4 地下水样品现场平行分析质量控制结果	 44
4.2.5 地下水样品实验室平行分析质量控制结果	 44
4.2.6 地下水样品加标回收分析质量控制结果	 44
4.2.7 地下水样品曲线中间点校准质量控制结果	45

第 4 页, 共 45 页

一、项目概况

受广州添利电子科技有限公司委托,对广州添利电子科技有限公司土壤和地下水自行监测项目(下简称"项目地块")的土壤和地下水进行现场检测及采样检测。我司于 2024 年 10 月 30 对项目地块的土壤进行现场采样,共采集了 11 个土壤样品(不含现场平行样),并于 2024 年 10 月 30 日~11 月 29 日完成了土壤样品的实验室分析检测。于 2024 年 11 月 04 对项目地块的地下水进行现场采样,共采集了 5 个地下水样品(不含现场平行样),并于 2024 年 11 月 04 日~11 月 16 日完成了地下水样品的实验室分析检测。我司最终出具了该项目地块的土壤和地下水的检测报告以及质控报告【检测报告编号为 ZD2024-E042,质控报告编号为 ZD2024-E042K】。

二、质量控制过程

2.1 采样和检测人员资质情况

参与本项目的采样和检测人员,均经过专业知识培训及考核,考核合格并持证上岗。参与本项目的采样和检测人员资质情况,详见下表 1。

	表 1 采样和检测人员信	息一览表
人员类别	人员姓名	上岗证编号
	黄志军	ZD-FM-010
采样人员	苏楚琪	JCPX(JC)20230103
	黎国政	ZD-FM-014
	刘学军	JCPX(JC)20220312
	傅双鹰	JCPX(JC)20210118
	黄智楷	JCPX(JC)20220015
	粱创鑫	JCPX(JC)20230105
LA YOU I D	陈炫烨	JCPX(JC)20230009
检测人员	萧伟玲	JLPX(JC)20240030
	赵思龙	ZD-FM-001
	李玉莹	JLPX(JC)20240029
	林威	ZD-FM-013
	皮婷婷	ZD-FM-005

表 1 平样和检测人员信息一览表

2.2 仪器设备一览表

本项目所使用到的所有关键仪器设备均进行了检定/校准,且仪器设备的检定/校准周期均 第 5 页, 共 45 页

在有效期内,详见下表 2。 表 2 投入使用的仪器设备信息一览表

仪器设备型号、名称	仪器设备编号	检定/校准日期	检定/校准有效期	仪器设备状态
FE28 pH it	ZDSB0321	2024.03.29	2025.03.28	合格
JM-A2002 电子天平	ZDSB0179	2024.10.15	2025.10.14	合格
GGX-600 火焰原子吸收分光光度计	ZDSB0008	2023.06.27	2025.06.26	合格
TRACE1300 气相色谱仪	ZDSB0196	2024.07,26	2026.07.25	合格
TRACE1300/ISQ7000 气相色谱-质谱联用仪	ZDSB0006	2023.06.20	2025.06.19	合格
UV-6000PC 紫外可见分光光度计	ZDSB0315	2024.10.15	2025.10.14	合格
TRACE1300+ISQ7000 气相色谱质谱联用仪	ZDSB0198	2024.08.02	2026.08.01	合格
DZB-712F 水质测定仪	ZDSB0332	2024.08.27	2025.08.26	合格
WZB-175 便携式浊度计	ZDSB0333	2024.08.27	2025.08.26	合格
iCAP RQ 电感耦合等离子质谱仪	ZDSB0226	2024.04.17	2025.04.16	合格
BEF-10 流动注射分析仪器	ZDSB0229	2024.04.17	2026.04.16	合格

第6页,共45页

2.3 检测方法、主要分析仪器及检出限

本项目所涉及的分析检测指标、检测方法、方法检出限、所使用的仪器设备名称、型号

序号	类别	检测项目	检测方法	仪器设备名称及编号	检出限
1	土壤	pH 值	《土壤 pH 值的测定 电位法》 HJ 962-2018	FE28 pH 计 ZDSB0321	1
2	土壤	水分	《土壤 干物质和水分的测定 重量法》 HJ 613-2011	JM-A2002 电子天平 ZDSB0179	1
3	土壤	铜	SCHOOL SECURITY SECURITY		l mg/kg
4	土壤	铅	《土壤和沉积物 铜、锌、铅、 镍、铬的测定 火焰原子吸收分	GGX-600	10mg/kg
5	土壤	镍	光光度法》 HJ 491-2019	火焰原子吸收分光光度计 ZDSB0008	3mg/kg
6	土壤	锌			1 mg/kg
7	土壤	氰化物	《土壤 氰化物和总氰化物的测 定 分光光度法》 HJ 745-2015	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.01mg/kg
8	土壤	氟化物	《土壤质量 氟化物的测定 离子 选择电极法》 GB/T 22104-2008	PXSJ-216F 离子计 ZDSB0262	125mg/kg
9	土壤	石油烃 (C ₁₀ .C ₄₀)	《土壤和沉积物 石油烃 (C ₁₀ -C ₄₀) 的测定气相色谱法》 HJ 1021-2019	TRACE1300 气相色谱仪 ZDSB0196	6mg/kg
10	土壤	萘			0.09mg/kg
11	土壤	苯并[α]蒽			0.1mg/kg
12	土壤	崫			0.1mg/kg
13	土壤	苯并[b]荧蒽			0.2mg/kg
14	土壤	苯并[k]荧蒽			0.1mg/kg
15	土壤	苯并[α]芘	- 《土壤和沉积物 半挥发性有机	Trace1300+ISQ7000	0.1mg/kg
16	土壤	茚并[1,2,3-cd]芘	物的测定 气相色谱-质谱法》	气相质谱联用仪	0.1mg/kg
17	土壤	二苯并[a,h]蒽	HJ 834-2017	ZDSB0006	0.1mg/kg
18	土壤	苊烯			0.09mg/kg
19	土壤	苊			0.1mg/kg
20	土壤	芴			0.08mg/kg
21	土壤	菲			0.1mg/kg
22	土壤	蒽			0.1mg/kg

第 7 页, 共 45 页

报告编号: ZD2024-E042ZK

序号	类别	检测项目	检测方法	仪器设备名称及编号	检出限
23	土壤	荧蒽			0.2mg/kg
24	土壤	芘	《土壤和沉积物 半挥发性有机	Trance1300+ISQ7000	0.1mg/kg
25	土壤	苯并[g,h,i]菲	物的测定 气相色谱-质谱法》 HJ 834-2017	气相质谱联用仪 ZDSB0006	0.1mg/kg
26	土壤	异佛尔酮			0.07mg/k
27	土壤	氯甲烷			1.0µg/kg
28	土壤	氯乙烯			1.0μg/kg
29	土壤	1,1-二氯乙烯			1.0µg/kg
30	土壤	二氯甲烷			1.5µg/kg
31	土壤	反式-1,2-二氯乙烯			1.4µg/kg
32	土壤	1,1-二氯乙烷			1.2μg/kg
33	土壤	顺式-1,2-二氯乙烯			1.3µg/kg
34	土壌	氯仿		TRACE1300+ISQ7000 气相色谱质谱联用仪 ZDSB0198	1.1µg/kg
35	土壌	1,1,1-三氯乙烷	《土壤和沉积物 挥发性有机物		1.3µg/kg
36	土壤	四氯化碳	- 的测定 吹扫捕集/气相色谱-质 谱法》		1.3μg/kg
37	土壤	1,2-二氯乙烷	HJ 605-2011		1.3μg/kg
38	土壌	三氯乙烯			1.2μg/kg
39	土壤	1,2-二氯丙烷			1.1μg/kg
40	土壤	1,1,2-三氯乙烷			1.2µg/kg
41	土壤	四氯乙烯			1.4µg/kg
42	土壌	1,1,1,2-四氯乙烷			1.2μg/kg
43	土壤	1,1,2,2-四氯乙烷			1.2μg/kg
14	土壌	1,2,3-三氯丙烷			1.2µg/kg
45	土壤	内酮			1.3µg/kg
16	地下水	pH 值	《水质 pH 值的测定 电极法》 HJ 1147-2020	DZB-712F 水质测定仪 ZDSB0332	1
17	地下水	浊度	《水质 浊度的测定 浊度计法》 HJ 1075-2019	WZB-175 便携式浊度计 ZDSB0333	0,3NTU
18	地下水	锋	《水质 65 种元素的测定 电感 耦合等离子体质谱法》 HJ 700-2014	iCAP RQ 电感耦合等离子质谱仪 ZDSB0226	0.67μg/L
19	地下水	可萃取性石油烃 (C ₁₀ -C ₄₀)	《水质 可萃取性石油烃 (C ₁₀ -C ₄₀) 的测定 气相色谱法》 HJ 894-2017	TRACE1300 气相色谱仪 ZDSB0196	0.01mg/L

第 8 页, 共 45 页

报告编号: ZD2024-E042ZK

序号	类别	检测项目	检测方法	仪器设备名称及编号	检出限
50	地下水	丙酮	《水质 甲醇和丙酮的测定 顶空 气相色谱法》 HJ 895-2017	TRACE1300 气相色谱仪 ZDSB0196	0.01mg/L
51	地下水	氟化物	《水质 氟化物的测定 离子选择 电极法》 GB/T 7484-19887	PXSJ-216F 离子计 ZDSB0262	0.05mg/L
52	地下水	氰化物	《水质 氰化物的测定 流动注射 -分光光度法》 HJ 823-2017	BEF-10 流动注射分析仪器 ZDSB0229	0.001mg/L

第 9 页, 共 45 页

2.4 样品的采集、保存、流转、制备和预处理

2.4.1 样品的采集和保存

2.4.1.1 土壤样品的采集和保存

采样依据为《土壤环境监测技术规范》(HJ/T 166-2004)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)、《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019)、《建设用地土壤污染防治 第 1 部分: 污染状况调查技术规范》(DB4401/T 102.1-2020)、《建设用地土壤污染防治 第 3 部分: 土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 4 部分: 土壤挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分: 土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.5-2021)及各检测项目对应的检测标准的相关要求进行。

土壤样品采集先后顺序为: VOCs—SVOCs—重金属和无机物,不同性质的样品采用不同的采集和保存方法,具体如下:

(1) 挥发性有机物 (VOCs) 样品的采集

采集挥发性有机物(VOCs 样品时,不允许对样品进行均质化处理,也不得采集混合样。 首先用不锈钢铲将原状岩芯表层 1-2cm 的土壤清除,迅速使用非扰动采样器在新形成的土壤 切面上采集约 5g 土壤样品,转移至带 PTFE 衬垫密封瓶盖的 40ml 棕色玻璃瓶中,转移过程 采样瓶略微倾斜,控制推入速度防止保存剂溅出,清理瓶口后立刻密封瓶盖。每个样品共采 集 4 瓶,其中 2 瓶预先加入 10 ml 甲醇保护剂用于高浓度样品测定,另外 2 瓶不添加甲醇(加 入磁力搅拌子)用于低浓度样品测定。另外采集一份到带 PTFE 衬垫密封瓶盖的 60ml 棕色玻璃瓶装满并密封,用于土壤水分的测定。样品采集后,立刻置于放有足量蓝冰的保温箱内, 在 4℃以下保存及运输,保存期限为 7 天。

(2) 半挥发性有机物(SVOCs)、石油烃(C10-C40)、氰化物样品的采集

采集半挥发性有机物(SVOCs)、石油烃(C_{10} - C_{40})、氰化物样品时,先用不锈钢铲将原状岩芯表层 1-2cm 的土壤清除,然后将样品采集至带 PTFE 衬垫密封瓶盖的 250mL 棕色玻璃瓶中压实并填满(消除样品项空)。样品采集后,立刻置于放有足量蓝冰的保温箱内,在 4 \mathbb{C} 以下保存及运输。

(3) 重金属、pH 值、氟化物样品的采集

采集重金属、pH 值、氟化物样品时, 先用木铲清除岩芯表层 1-2cm 的土壤, 根据现场判第 10 页, 共 45 页

报告编号: ZD2024-E042ZK

定的采样位置将均匀采集的 1KG 以上土壤样品装入密封袋中。样品采集后,置于放有足量蓝冰的保温箱内,在 4℃以下保存及运输。

土壤样品采集完成后,在样品瓶(袋)外粘贴清晰标明有样品编号、采样点位、采样日期、检测项目等信息的样品标签,并在样品容器外再多设置一层密封袋及标签,做到双袋双标签,防止样品运输过程受到污损或污染。

不同的检测项目,样品的采集容器和保存方式各有不同,详见下表:

表 4 土壤样品采集和保存条件

	表 4 工 環件 前	· · · · · · · · · · · · · · · · · · ·	
检测项目	采集容器	保存时间和保存条件	标准依据
挥发性有机物	40mL 带 PTFE 衬垫密 封瓶盖棕色玻璃瓶	7d, <4℃, 避光密封保存	НЈ 605-2011
半挥发性有机物	250mL带PTFE衬垫密 封瓶盖棕色玻璃瓶	10d, <4℃,避光密封保存	НЈ 834-2017
石油烃 (C10-C40)	250mL 带 PTFE 衬垫密 封瓶盖棕色玻璃瓶	样品 14d, 提取液 40d, <4℃, 避光密封保存	НЈ 1021-2019
氰化物	250mL带PTFE衬垫密 封瓶盖棕色玻璃瓶	2d, <4℃, 避光密封保存	НЈ/Т 166-2004
水分	250mL 带 PTFE 衬垫密 封瓶盖棕色玻璃瓶	<4℃,密封保存	НЈ/Т 166-2004
pH 值	聚乙烯袋	<4℃,密封保存	НЈ/Т 166-2004
氟化物	聚乙烯袋	<4℃,密封保存	НЈ/Т 166-2004
铅、镍、铜、锌	聚乙烯袋	- 180d,<4℃,密封保存	НЈ/Т 166-2004

第 11 页, 共 45 页

2.4.1.1.1 土壤样品采集过程质量控制

- (1) 现场采样每个检测项目每批次按10% 的比例采集现场平行样开展分析。
- (2) 针对挥发性有机物,每批次土壤样品采集 1 个全程序空白样品。采样前在实验室准备一个添加有 10ml 试剂水的带 PTFE 衬垫密封瓶盖的 40ml 棕色玻璃瓶,将其带到现场,与采样的样品瓶同时开盖和密封,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品采集到分析全过程是否受到污染。
- (3) 针对挥发性有机物,每批次土壤样品采集 1 个运输空白样品。采样前在实验室准备一个添加有 10ml 试剂水的带 PTFE 衬垫密封瓶盖的 40ml 棕色玻璃瓶,将其带到现场,采样时使其瓶盖一直处于密封状态,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品运输过程中是否受到污染。

2.4.1.2 地下水样品的采集和保存

地下水样品的采集、保存、运输和质量保证等按照《地下水环境监测技术规范》 (HJ164-2020)及各项目分析方法标准的相关要求进行。

在采集地下水样品前使用各井专属的贝勒管进行洗井(采样洗井),洗出约 3~5 倍井体积的水量后,使用便携式水质测定仪对出水进行测定,浊度小于或等于 10NTU 时或者当浊度连续三次测定的变化在 10%以内、电导率连续三次测定的变化在 10%以内、pH 连续三次测定的变化在±0.1pH 以内;或洗井抽出水量在井内水体积的 3 倍以上时,可结束洗井。

在采样前洗井结束后 2h 内待井内的水位恢复稳定后,使用带低流量控制阀的贝勒管,按照规定的流量采集相应层次的地下水样品至对应的容器中,依据《地下水环境监测技术规范》(HJ 164-2020)以及相关检测标准的要求,对样品采取相应的保存措施(注明除外),详见下表:

检测项目	采样容器	保存时间和保存条件	标准依据
pH 值	1.	现场测定	НЈ 1147-2020
浊度	- /	现场测定	HJ 1075-2019
丙酮	40mL 带 PTFE 衬垫密 封瓶盖棕色玻璃瓶	14d,加入盐酸,pH≤2,4℃下避 光保存	НЈ 895-2017
可萃取性石油烃 (C ₁₀ -C ₄₀)	1000mL 棕色玻璃瓶	盐酸酸化至 pH≤2, 4°C下避光保存,样品 14d,提取液 40d	HJ 894-2017
氰化物	250mL 聚乙烯瓶	24h, 加入 NaOH 到 pH>12, < 4°C, 避光密封保存	НЈ 823-2017

表 5 地下水样品采集和保存条件

第 12 页, 共 45 页

报告编号: ZD2024-E042ZK

检测项目	采样容器	保存时间和保存条件	标准依据
氟化物	250mL 聚乙烯瓶	14d, 0~4℃冷藏保存	HJ 84-2016
锌	250mL 聚乙烯瓶	14d,硝酸酸化 PH≤2,避光密封 保存	НЈ 700-2014

地下水样品采集后,在样品瓶上记录样品编号,填写样品流转单,及时将样品放到装有 冰冻蓝冰的低温保温箱中,并送回实验室待检。

第 13 页, 共 45 页

2.4.1.2.1 地下水样品采集过程质量控制

- (1) 地下水样品按照挥发性有机物——稳定有机物——重金属和普通无机物的顺序采集。
 - (2) 对于未添加保护剂的样品瓶, 地下水采样前需用待采集水样润洗 2~3 次;
- (3)使用贝勒管采集挥发性有机物样品时,应缓慢沉降或提升贝勒管。取出后通过调节 贝勒管下端低流量控制阀,使水样沿瓶壁缓缓流入瓶中,直至在瓶口形成一向上弯月面,旋 紧瓶盖,倒置瓶身检查底部是否有存在顶空或气泡,如有立即重采;
- (4) 采集重金属及无机物的地下水样品时,现场使用真空抽滤装置将样品过 0.45 μm 滤 膜后再加酸保存。抽滤前控制贝勒管流速,用待采集水样润洗抽滤装置 2~3 次,弃去 50mL 初始滤液再开始采集。
- (5)针对本地块全部检测项目,采集不少于地块样品总数 10%的地下水现场平行样品,并至少采集 1 份。
- (6) 针对本地块全部检测项目,每批次地下水样品采集1套全程序空白样品。在实验室 预先使用相应容器装入试剂水,将其带到现场。与采样的样品瓶同时开盖和密封,随样品运 回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品采集到分析全过程是否 受到污染。
- (7) 针对挥发性有机物项目,每批次地下水样品采集1套运输空白样品。在实验室预先使用1个带 PTFE 衬垫密封瓶盖的 40ml 棕色玻璃瓶装满试剂水,将其带到现场,采样时使其瓶盖一直处于密封状态,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品运输过程中是否受到污染。

2.4.2 样品的流转

土壤和地下水样品流转依据为《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ 164-2020)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)、《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019)、《建设用地土壤污染防治 第 1 部分:污染状况调查技术规范》(DB4401/T 102.1-2020)、《建设用地土壤污染防治 第 3 部分:土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 4 部分:土壤挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.5-2021)及各检测项目检测

第 14 页, 共 45 页

标准的相关要求进行。

在采样现场样品必须逐件与样品登记表、样品标签和采样记录进行核对,核对无误后分类装箱:

- (1)将样品保存在有冰冻蓝冰的保温箱,避光保存,现场记录保存温度,保存温度应低于 4°C,填写温控记录;
- (2)运输前逐件核对现场样品与登记表、标签、采用记录,核实样品标签完整、无破损,与现场记录无出入后分类装箱运输。
- (3)运输过程中,专人看管运输过程中无样品损失、混淆和沾污,样品于当天到达实验室,到达实验室之后,当场清点样品数量,检验样品包装及标签有无破损,样品数量是否齐全;
- (4) 经送样、接样双方确认后,填写样品流转单,然后实验室分析测试技术人员根据不同检测因子要求进行保存,均在样品保存有效期内完成样品分析。

第 15 页, 共 45 页

2.4.3 土壤样品的制备

新鲜样品制备依据为各检测标准的相关要求进行制备。

干土壤样品制备依据为《土壤环境监测技术规范》(HJ/T 166-2004)和《建设用地土壤 污染防治 第 3 部分: 土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020) 的相关要求进行。

风干样品制备流程:

样品采回实验室后,尽快进行样品风干、样品粗磨、样品细磨、样品分装、样品留样流 程。

风干: 样品放置于干净的搪瓷盘中并摊成 2~3cm 的薄层进行风干、风干方式为自然风干,同时用木锤进行压碎,并经常翻动,拣出碎石、砂砾、植物残体,风干至土壤样品无明显水迹。

粗磨样品:在研磨室粗磨工位将风干的样品用木锤再次敲打、压碎,拣出杂质,混匀后压碎样,过孔径 2mm (10目) 尼龙筛。过筛后的样品全部置于无色聚乙烯薄膜上,并充分搅拌混匀,再采用四分法取其两份,一份交样品库存放,另一份作样品的细磨用。土壤粗磨样可直接用于土壤 pH 和水分的分析。

细磨样品:在研磨室细磨工位将用于细磨的样品再用四分法分成两份,一份研磨后全部过孔径 0.25 mm (60 目)筛,用于土壤有机质等项目分析(如有);另一份研磨后全部过孔径 0.15 mm (100 目)筛,用于土壤元素全量分析。

样品分装:研磨混匀后的样品,分别装于样品袋或样品瓶,填写标签一式两份,瓶内或袋内一份,瓶外或袋外贴一份。

第 16 页, 共 45 页

2.4.4 样品的分析前处理/预处理

表 6 土壤样品的分析前处理/预处理步骤

序号	项目	标准依据	样品前处理(预处理)步骤
1	挥发性有机物	НЈ 605-2011	取出样品瓶, 待恢复至室温后, 称重, 加入 5mL 的纯水, 加入适量内标溶液、替代物标准溶液,排样到吹扫捕集自动进样器上上机测定。
2	半挥发性有机物	НЈ 834-2017	称取适量样品于小烧杯,加入替代物与硅藻土混匀,脱水并研磨成细小颗粒,充分拌匀,转移至萃取池中,用加压流体萃取装置萃取,收集全部萃取液至高通量真空平行浓缩仪中,将样品浓缩至小于1mL,采用SPE 柱净化特定的目标分析物,净化后收集洗脱液,再浓缩至小于1mL,加入内标并定容至1.0mL,摇匀待测。
3	石油烃 (C ₁₀ -C ₄₀)	НЈ 1021-2019	称取适量样品于小烧杯,加入硅藻土混匀,脱水并研磨成细小颗粒,充分拌匀,转移至萃取池中,用加压流体萃取装置萃取,收集全部萃取液浓缩样品至小于1ml,采用净化柱净化特定的目标分析物,净化后收集洗脱液,再浓缩至小于1mL,用溶剂定容至1.0mL,摇匀待测。
4	水分	НЈ 613-2011	具盖容器和盖子于(105±5)℃下烘干 lh,稍冷,盖好盖子,然后置于干燥器中至少冷却 45min,测定带盖容器的质量 mo,精确至 0.01g 用样品勺将 30~40g 新鲜土壤试样转移至已称重的具盖容器中,盖上容器盖,测定总质量 mi,精确至 0.01g。取下容器盖,将容器和新鲜土壤试样一并放入烘箱中,在(105±5)℃下烘干至恒重,同时烘干容器盖。盖上容器盖置于干燥器中至少冷却 45min,取出后立即测定带盖容器和烘干土壤的总质量 m2,精确至 0.01g。
5	pH 值	HJ 962-2018	称取 10.0g 土壤样品置于 50mL 适宜的容器中,加入 25mL 水。将容器用封口膜密封后,用水平振荡器刷烈震荡 2min。静置 30min,在1h 内完成测定。
6	铜、铅、镍、锌	НЈ 491-2019	①称取0.2g~0.3g(精确至0.1mg)样品于坩埚中,用水润湿后加入5mL 盐酸,于电热板上90℃~100℃加热; 待消解液蒸发至约3mL时,加入5mL 硝酸,加盖加热至无明显颗粒,加入5mL 氢氯酸,开盖于120℃加热飞硅30min,稍冷; ②加入1.5mL高氯酸,加盖于150℃~170℃加热30min后开盖加热至冒白烟; ③若坩埚壁上有黑色碳化物,重复步骤②; ④加热赶酸至内容物呈不流动的液珠状,取下坩埚稍冷,加入2.5mL(1+9)硝酸,温热溶解可溶性残渣,转移定容至50mL,并掘匀待测。

第 17 页, 共 45 页

报告编号: ZD2024-E042ZK

序号	项目	标准依据	样品前处理 (预处理) 步骤
7	氰化物	НЈ 745-2015	取10g干重样品移入蒸馏瓶中,另外连接蒸馏装置,打开冷凝水,在接收瓶中加入10mL氢氧化钠溶液吸收液。在加入样品后的蒸馏瓶中依次加200mL水、3mL氢氧化钠和10mL硝酸锌溶液,摇匀,迅速加入5mL酒石酸溶液,立即盖塞。打开电炉由低档逐渐升高,当吸收液近100mL时,停止蒸馏,用少量水冲洗馏出液导管后取出接收瓶,用水定容。再向比色管中加入5mL磷酸二氢钾溶液,混匀,迅速加入0.3mL氮胺T溶液,立即盖塞,混匀,放置1min~2min。向各管中加入6mL异烟酸-巴比妥酸显色剂,加水稀释至标线,摇匀,于25°C显色15min,待测。
8	氟化物	GB/T 22104-2008	准确称取土样 0.2g 于镍坩埚中,加入 2.0g 氢氧化钠,加盖,放入马弗炉中。由低温逐渐缓缓加热至 560°C±10°C 后,保持 20min。取出冷却,用约 50mL 煮热的废水分几次浸取,直至熔块完全溶解,全部转入 100 ml 容量瓶中,缓慢加入 5.0ml 盐酸溶液,混匀,用水稀释至标线,据匀,静置待测。准确移取试样的上清液 10.0ml 于烧杯中,加入 1滴-2 滴溴甲酚紫指示剂,边摇边逐滴加入盐酸,直至溶液由蓝紫色刚变为黄色。将溶液全部转移至 50mL 容量瓶中,加入 15.0ml 总离子强度缓冲溶液,用水稀释至标线,混匀后,测定试料的电位响应值。

第 18 页, 共 45 页

表 7 地下水样品的分析前处理/预处理步骤

序号	项目	标准依据	样品前处理(预处理)步骤
1	丙酮	НЈ 895-2017	将样品瓶恢复至室温后,准确移取 10.0ml 样品于预先加入 3.0g 氯化钠的顶空瓶中,立即加盖密封,待测。
2	可萃取性石油烃 (C10-C40)	НЈ 894-2017	将样品全部转移至 2L 分液漏斗,量取 60ml 二氯甲烷洗涤样品瓶,全部转移至分液漏斗, 振荡萃取 5min, 静置 10min, 待两相分层, 收集下层有机相。再加入 60ml 二氯甲烧, 重复上述操作, 合并萃取液。将萃取液通过无水硫酸钠脱水,将水相全部转移至量筒中, 读取样品体积并记录。将萃取液使用浓缩装置浓缩至约 1ml (浓缩二氯甲烷参考条件; 水浴温度 35℃,真空度为 750hPa), 加入 10ml 正已烷,浓缩至约 1ml (浓缩正己烷参考条件: 水浴温度 35℃,真空度为 260hPa),再加入 10ml 正已烷,最后浓缩至约 1ml,用正已烷定容至 1.0ml,摇匀待测。
3	锌	НЈ 700-2014	量取 50mL 摇匀后的样品于 250mL 聚四氟乙烯烧杯种,加入 2mL 硝酸溶液和 1mL 盐酸溶液于烧杯中,置于电热板上加热消解。盖上表面皿持续加热,直至样品蒸发至 20mL 左右。待样品冷却后,用去离子水冲洗烧杯三次,并将冲洗液倒入 50mL 比色管中,定容。
4	氟化物	GB/T 7484-1987	吸取适量试样于 50mL 容量瓶中,用乙酸或盐酸调节 pH 至近中性,加入 10ml 总离子强度调节缓冲溶液,用水稀释至标线,摇匀,将其注入 100ml聚乙烯杯中,放入一只塑料搅拌棒,插入电极,连续搅拌溶液,待电位稳定后,在连续搅拌时读取电位值。在每次测量之前,都要用水充分冲洗电极,并用滤纸吸干。
5	氰化物	HJ 823-2017	量取适量样品,用纯水定容,摇匀,待测。

第 19 页, 共 45 页

2.5样品时效性统计

2.5.1 土壤样品时效性统计

表 8 土壤样品时效性情况表

*	标准依据	HJ 605-2011	87	下密 HJ 度4°C 1021-2019	存 HJ/T 166-2004	在 HJ/T 166-2004	#AR存 HJ/T 166-2004	7	HJ/T 166-2004	IG存 HJ/T 166-2004	保存 HI/T 156-2004	HIT
标准要求	保存时间和条件	7d, < 4°C, 避光密封保存	10d, 4°C以下避光密封保 存	14d 内前处理, 4°C以下密封、避光保存: 提取液 4°C 以下避光保存: 投取液 4°C	<4°C, 避光密封保存	<4°C, 避光密封保存	180d, <4°C, 遵光密封保存	180d, < 4°C, 避光密封保存	180d, <4°C, 避光密封保存	180d, <4°C, 避光密封保存	2d. <4°C, 避光密封保存	
实验室	保存方式	低温避光 密封保存	低温避先 密封保存	低温避光 密封保存	低温避光 密封保存	低温避光 密封保存	低温避光 密封保存	低温避光 密封保存	低温避光 密封保存	低温姆光 密封保存	低温避光 密封保存	低温避光
样品分析	时间	2024,10.31	2024.11.07	2024.11.29	2024.11.01-	2024,11,28	2024.11.29	2024.11.29	2024.11.29	2024.11.29	2024.10.30	1000
样品前处理	时间	,	2024.11.04	2024.11.04	,	,	2024,11.28	2024.11.28	2024.11.28	2024.11.28	~	
样品制备	时间	,	1	~	,	2024.11.03	2024.11.03	2024.11.03	2024.11.03	2024.11.03	2024,11.03	200111000
样品风干	时间	~	7	,	1	2024.10.30-	2024.10.30-	2024.10.30- 2024.11.02	2024.10.30- 2024.11.02	2024.10.30-	2024.10.30-	2024.10.30-
样品接收	ii lu	2024.10.30 16:40	2024.10.30 16:40	2024.10.30 16:40	2024,10,30 16:40	2024.10.30 2024.10.30- 16:40 2024.11.02	2024.10.30 16:40	2024.10.30 16:40	2024.10.30 16:40	2024.10.30 16:40	2024.10.30 16:40	2024.10.30
米样时间		10:21-15:46	10:21-15:46	2024.10.30 10:21-15:46	10:21-15:46	10:21-15:46	10:21-15:46	10:21-15:46	10:21-15:46	10:21-15:46	10:21-15:46	10:31 15:46 2024.10.30 2024.10.30
采样日期		2024.10.30	2024.10.30	2024.10.30	2024.10.30	2024.10.30	2024.10.30	2024.10.30	2024.10.30	2024.10.30	2024.10.30	2024 10 30
世 章	数压	Ξ	Ħ	Ξ	Ξ	Ξ	Ξ	=	Ξ	Ξ	Ξ	
检测力法		HJ 605-2011	HJ 834-2017	HJ 1021-2019	HJ 613-2011	HJ 962-2018	HJ 491-2019	HJ 491-2019	HJ 491-2019	HJ 491-2019	HJ 745-2015	GB/T
位 加 口	n X	挥发性有机物	半挥发性有机物	石油烃(Cto-C40)	水分	pH值	电	遊	蒜	掛	氧化物	源今縣
本 生	AN LA						SI					

第20页, 共45页

样品前处理 样品前处理 转品分析 实验室 时间 保存方式 / 現场測定 / / 2024.11.16 焦료酸胶化、盐酸胶化、盐酸胶化、盐酸酸化、盐酸酸化。 2024.11.07 2024.11.09 低温避光保存。 2024.11.04 保温避光保存 / 2024.11.04 低温避光保存 / 17.39 低温遮光保存	标准要求 条存时间和条件 现场测定 现场测定	5准要求1条件
数量 不下口70 时间 时间 时间 时间 时间 时间 时间 保存方式 5 2024.11.04 10:48-15:49 / / / / 現场測定 / 5 2024.11.04 10:48-15:49 / / / 期场测定 / 5 2024.11.04 10:48-15:49 2024.11.04 / 2024.11.07 2024.11.07 在温整光保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.05 保温整光保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.05 保温整光保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.05 保温整光保存 5 2024.11.04 10:38-15:49 2024.11.04 2024.11.04 供温整光保存 5 2024.11.04 10:38-15:49 2024.11.04 供温整光保存	保存时间和条件 现场测定 现场测定	1条件
5 2024.11.04 10:48-15:49 / / 月场测定 / 5 2024.11.04 10:48-15:49 / / 期场测定 / 5 2024.11.04 10:48-15:49 2024.11.04 / 2024.11.06 株置避光保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.09 株置避光保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.05 報報選先保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.05 報報選先保存 5 2024.11.04 10:48-15:49 2024.11.04 (報證光保存 5 2024.11.04 10:48-15:49 2024.11.04 (報證證光保存	现场测定现场测定	
5 2024.11.04 10:48-15:49 /	现场测定	佃
5 2024.11.04 10:48-15:49 2024.11.04 / 2024.11.16 基股股化. 5 2024.11.04 10:48-15:49 2024.11.07 2024.11.09 在温速光保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.09 確温速光保存 5 2024.11.04 10:48-15:49 2024.11.04 2024.11.05 建設股化. 5 2024.11.04 10:48-15:49 2024.11.04 (福温整光保存 7 7:30 7 2024.11.04 (福温整光保存 7 7:39 7 2024.11.04 (福温整光保存	And the second of the second o	倒
5 2024.11.04 10:48-15:49 2024.11.04 2024.11.07 2024.11.09 無股廢化。 (電温整光保存 17:30 5 2024.11.04 10:48-15:49 2024.11.04 17:30 2024.11.05 2024.11.05 確温整光保存 17:39 5 2024.11.04 10:48-15:49 2024.11.04 17:30 17:39 低温整光保存 17:39	14g, 加入組製, bH23, 4gCト剤尤採布	. 4°C下頭光
5 2024.11.04 10:48-15:49 2024.11.04 2024.11.05 確認整化, 17:30 5 2024.11.04 10:48-15:49 2024.11.04 / 2024.11.04 / (2024.11.04 () (() (() () () () () () () () () ()) () () ()) ()) ()) ())) ())) ())))))))))))))))))	盐酸酸化至 pH≤, 4°C下避光保存, 样品 14d. 提取液 40d	%C下避光保7取液 40d
5 2024.11.04 10:48-15:49 2024.11.04 7 2024.11.04 低譜遊光除存 17:39	14d, 硝酸酸化, pH<2	z, pH<2
	24h, 加入 NaOH 到 pH>12, <4ºC, 曝光密封保存	到 pH>12, 密封保存
HJ84-2016 5 2024,11.04 10:48-15:49 2024,11.04 / 2024,11.07 低過避光保存 14d. 0-	14d, 0-4°C冷藏保存	>藏保存

三、质量控制结果汇总

3.1 土壤样品质控结果汇总

表 10 土壤样品质控结果汇总

					20年17年	44.2			11日子河東京	£			4/1面彩井	11					100	4426362936				*	SETTO METER IN	г	4 STREET	100	40.00
it:	10.00万里日	\$4377445	17.43			A 400 A 400 A		27.44	OCCUPANION.			42.55	W.C. V. Length			the contract of		INGIGERY.	L	お母弟の不存留か	_	50分開化中期10%	L			_	-	1	
9				# H P 14	MCRP4.	が存在する	2 d	6 H	HEN.	WWW.	会社	# J # J # J	海北市 位任 mg/kg	SC PP INTE PUPE	佐が	91.0	超生	2012 2012 2014 2014	81	# Matters	+	46.60年	数学	+#	dr,	44	4.15	10 to	6 % 6 %
-	pletin	HJ 962-2018	#	E	0.05-0.23 (#b78:#40)	13961	901	3 182	0,04-0,18 (%17 #2/R)	Na.Spli	1001	1 9.1	8.65 (Phtts: 35 WHB	8.20-8.90 (外(5, 光報	8	-	~	*	~	~	-	*	-	×		>	-	2	-
н	*	1102-519	=	187	0.1 (0.8.95.200%) (0.8.95.200%) (0.8.95.200%) (0.8.95.200%)	261.3 (0)659-5 300%, 803-7 (800) 25 (0)639-7	100	1 9.1	1.0 (0.84%) 2.1 3054. (849 (2) 2.4 (4)	21.5 (38.92) 304.48)	8	×	<		- 2	-	*	-	,	~	~	~	~	~			- 2	-	~
6	let		=	2 18.2	11-43	220	100	1 9.1	1.4	930	- 001	1 9.1	20.	37-61	100	-	1		,		-		-		10.0	100	+	+	
7	9		=	2 182	0,7-1.99	520	100	1.6.1	1,1	B	1001	1 9.1	49.2	41.3-43.9	100	-			-	-			1			9		1	1
n	推	HU 491-2019	=	1 182	0.0-2.4	830	300	1.0	27	t		1 9.1	RE	77-63	800	-	-	-	-	-	-		1			200		1	1
g	4		=	2 18.2	1.4-6.7	830	100	1 0.1	3,0	520	1001	1 9.1	178	177-180	100	1	1	-			1		1			3 1			1
ē.	製化物	363.245-2015	=	2 182		975	100	2 18.2		230	1.001	-	-	1	-	1	0	1 182	-	88 5-103 e	-	20,130	1		100	1	-	1	
a	11.55.TH	GB/T 22 (81, 2108	==	2 18.2	36-3.1	510	81	2 18.2	0,4-0.7	+	1001	6.3	970	857.961	100			1	~	,	1	1	-			100		1	
0.	17 (MARK) (C1, 1-C1, 1)	1021-20101	=	2 18.2	6.9-4.3	ŧ	8	5 27.3	0'0	Đ,	7 001		1	1	1	-		16 16	92.4	80.0	70-120	50-1-09	160	-		100		-	-
10	#5		=	2 18.2	4	0k>	801	9.1		- or-	1001	1	,	,	-	-	-	1 9.1	`	28.9	-	30,004	100	ŀ	1	100	+	+	
11	選制が米米		-	2 18.2		<:10	8	100 1 9.1				× .	~		1		-	1 9.1	-	98.7		78-121	+	ŀ		100	-	1	-
13	Ħ		11	2 18.2		<40	100	1 9.1		4.40	/ 001	-	1	1	-	-	-	16.	-	113.7	-	54-122	+	-	-	100		1	1
1	某并他以及自		=	2 18.2	*	<.40	1001	1.6.1		00->	1001	1	9	()	×	,	-	1.6	*	64.7	1	504131	+	ŀ	0.0	100	-	1	1
34	共井田政政局		=	2 18.2		e>40	1001	0.1		980>	100	1	1 1		100	-	-	1 87	*	26.4		76-114	360	-	176	100			1
138	素材(の発		=	2 18.2		<40	1001	1 9.1	v	240	100	1	1	1.1	1	,	-	1 9.3	~	69.3	1	45-103	100	-	9.0	100	-	1	-
36	WHELT TO SHOUTE			2 18.2		√40	100	9.1	à	+10.480	100	1		1	1	-	-	1 9.1		58.8	1	50-132	100	-	9.1	100	-	1	-
11	川戸正水谷川		=	2 18.2		<40	100	9.1	4	04.5	1001	1	0 9		1	,	1	1 9.3	~	67.0	1	64:128	300	-	176	100	-	1	-
22	22	HJ 834-3017	=	2 18.2		240	100	0.1		<.00	100	7	1	177	1	,	-	1 9.1	~	RAR		56-02	100	-	- 6	100	-	-	2
10	u		=	2 18.2		<40	100	1.0		<40	1 001	1.7	1.	1	1.	1	-	6 9,3		17.3	-	36-104	100	-	9.1	100	1	>	-
R	10		=	2 18.2		<40	1001	9.1		<40	1001	1	11		1	-	-	1.9.1		78.0	-	71:03	300	-	176	100	-	1	-
ñ	12		=	2 18.2		<40	1001	1.6		240	1 001	11	0	100	1	,	-	1 9.2		27.6		00-1-10	100	-	1.6	100	-	-	-
ŝ	*			2 18.2		<40	1001	9.1	*	> 40	1001	4	~	1	1.		1	1 9.3	4	60.3	-	65-101	100	=	1.6	100	-	-	-
n	相似			2 18.2		V40		1 9.1	100	V40	1001		4	1		1	-	7 9.3	/	15.3	*	63:119	100		1.8	100	0		~
ñ	#			2 182	,	C4D	100	1'6		-	100	-	- 2	0	4			1 9.3	,	113.5		774117	100	Ξ	17	8	-	7	-
8	Megauitt			2 182		GK>	100	9.1		240	100		1		1		1	1 93	, V.	67.2		49-123	100	-	9.1	81	-	-	-
90	神田田田		\rightarrow	1 18.2	¥	V 40	100	0,1	¥		100	1	1	- 72	1	1	-	1 93	/	147	-	62.0X	100	-	9.1	100	1	-	-
27	報子祭			2 18.2		423	100	1.0		-	001	,	1	11		1		18.2	7 2	76.99	1	718-130	100	E	9.1	100	2	1001	100
F1	#2# #2#			2 18.2		V25	100	9.1	W 18	-	100	~		1	4	1	4	182	/	106.6	~	70:130	100		9.1	901	100	1 0	100
Ř	1.1-142.8			117	,	<25	100	0.0			1001			11	1	1		7 18.2	1	11374	/-	70-130	100	-	9.1	100	100	0	100
90	- 1	HJ 605-2011		2 18.2	,	5	100	0.1		-	100	-			-	1	.,	18.2	4	1144	7	70-130	202	Ξ	176	001	1000	1 0	100
ñ	8	1 日本の日本の日本日本		2 18.2		V25	100	9.1		-	100	-	,	1	1		n	182		101.7	1	70-130	2.00	-	9.1	001	001	0	100
2	- 1	五量行前投水投充		1 IR.3	,	V 228	100	0.3		-	7 001	,		,	,	,	7	/ 111.2	, ,	107.6		76-130	100	-	9.3	001	190	1 0	100
a .	SKIN STREET		-	18.2	,	S.				-	1001		1	11	-		**	18.2		100.6	1	70-130	100	-	9.3	100	100	1 0	100
2	40			18.3		\$ V		101		-	1001	,	-		-	,	ei.	182		103.9	7.	70-130	100	-	0.1	100	130	7 0	100
8 3	MATERIAL SECTION AND ADDRESS OF THE PERSON A			1 182		2	8 5			33	100		,			,	"	/ 182		113.3		16-130	8	-		100	100	1 0	100
	LI SECTOR			7.07		9		,		-	1001	-	,			1	,	/ 1112	2.0	126.0	100	200.120	-						

第22页, 共45页

-					強	世界 十分等			被除其不行為	北山北			77.0	有证标样					\$20.5	首於国代群				が部分	共和国公司	_	全程序空台	岩脂立自
10	2010000		16 81			\vdash		3.	18.0				18.33	が光学	-	17	1000	特品比例%		加尼回收丰在图片	允许国	允许回收本部匿物	-	-			4	-
tih .	かを設置	利定依赖	献	中 中 時間。 (1)	語	は 報源 上記 ・	는 위 다 위	4-55	形形型を発 を発 を発	変え	(1) 科	(- 22	HA MENTER	10	ir si	如拉伯森	報報	20 情品 加格 加锅	A 空台市场	作品加标	担日日	存品和語	9 17 16 16 16 16	- 概 記 %	2.4	6 起 包建	2 A	- 大
B	12二萬乙烷		=	-	18.7	<25	100	-	9.1	555	001	7 0	8 3	7	~	1	2	/ 18.2	2 /	133.0	1	70-136	190	1 9.1	1 100	1 0	100	1 100
99	三葉乙烯		Ξ	2 18.2	+	St>	100	-	9.1	525	201 8	7 0	1 1	2	1	7	2	/ 18.2	/ 2	97.2	7	70-130	100	1 9.1	1 100	1 0	100	1 100
2	12.1蒙西位		=	2 18.2		9	100	=	9,1	525		7 001	1 1	-		-	2	/ 18.2	2 /	104,3	1	70-130	100	1 9.1	1 100	1 0	100	1 100
40	1.1.2-三氯乙烷	HJ 605-2011	_	64		SQ.	100	Ξ	. 1.6	ñ	300	7 0	1 1	1	*	1	12	18.2	23	111.5	-	70-130	100	1 9.1	1 100	- 0	100	1 100
Ŧ	Г	《 新放行并列 建五 基 新 物 版 · · · · · · · · · · · · · · · · · ·	=	2 18.2	2	<25	100	-	. 1.0	503	100	7 0	1 1	,	1	~	2	/ 18.2	7	17.6	S.	70-139	100	1 9.3	1 100	-	100	1 100
57	45	质量控制技术规定	=	e4	18.2	<25	100	Ξ	1.6	525		/ 001	1 1	7	10	1		/ 18.2	~	112.6	~	70-130	100	1 9.1	1 100	- 0	100	1 100
2	1,122-四氯乙烷	^	=	74	18.2	< 255	100	Ξ	9.1	12		1 001	1 1	1	0	~	es	18.2	,	113.1	-	70-130	100	1 9.1	1 100	- 0	100	1 100
14	123日銀円部		=	24	18.2	\$25	100	-	9.1	525	-	/ 001	1 1	1	-	1	**	/ 18.2	13	118.8	1	70-130	100	1 9.1	1 100	 9	100	1 100
4	国国		=	cı	182	<25	100		9.1	525	-	/ 001	1 1	,	1	1	2	/ 18.2	7	1173	1	30-130	100	1 9.1	1 100	1 0	100	1 100
9	2.集励(特代数)		=			-	-	1		1	^	1	1 1	~	1	^	11	/ 100	, 0	48.1-51.6	7	46.5-57.0	100	1	1	,	~	~
4	茶原-砂(香代物)		Ξ	-	1	1	-	`	1 3	×	7	-	1 1	1	1	1	11	/ 100	, 0	47.0-51,8	1	45.9-53.2	100	1	1		1	-
100	(体科)(中代物)		=	1	7	*	1	1	2 2	Y		1	10 1	1	1	+	11	7 100	, 0	613-68.3	`	58.9-69.0	100	-		-	-	-
8		HJ 83-6-2017	Ξ	-	- 2	+	~	~	1 2	,		4	1 1	1	1	1	11	/ 100		\$2.4-57.0	~	50.0-59.4	100			-	-	
8	2.46三級等的(排代数)		Ξ	~	,	1	-	~	7. 7.	,	2	1 1	7 1	×	1	1	22	/ 100	. 0	51.6-67.9	~	43.6-69.0	100	-	-	-	4	14
15	4, 4~三脱第-组4 (游传物)		Π	1	1	7	1	~	1 1	1		-	1 1	~	-	-	111		, 00	83.2-93.1	-	81.0-96.7	-	_		-	~	~
32	二條集甲烷(数代物)		11	7	18.2 1.11-	213 <235		100 2 18.2	8.2 2.7-3.1	1 <25	-	/ 901	1 1		-	~	11	2	/ 001	73.0-104.6	~	70-130	100	4	2	-	-	,
53	中泽-D8(春代物)	HJ 605-2011	=	**	18.2 0.2-	02-0.6	100	2 18.2	8.2 0.0-0.8	8 <25	-	/ 001	1	1	-	~	Ξ	310	/ 001	85.7-107.1	-	70-130	100	-		-	4	-
2	4.编笔率(卷代物)		Ξ	11 2 18	18.2 1.15	11.27 <25		100 2 18.2	8.2 2.7-12.8	-	<25 10	7 001	1 1	-	-	-	=	1 10	/ 001	962-128.0	7	70-130	100	-		-	-	-
华 加	1、原相位、水分S200s。 1、成粒数据统计表格 3、在证标样能组体组 4、水质图土基棒组的的	· 编版图图为编数程程,pattles 化为元素。 水子12元%, 康姓的图为指导指。 19.1 第4.2 20 20 20 20 20 20 20 20 20 20 20 20 20	信: 12 年度: 天毎:	東京 日本	为无量解, 式, "我是 无量解, 其 1个全程序的	长分>30%。偏便在各数长回线 使在各数长回线 全部为四路等 2台部1个指数字	施施服外 2原施子 白、大学 4、大学 4、大学 4、大学	着発音 が指揮子 (第77)	篇: 元金章子公司 6.全章子公司 6.字章子公司	无治中解析功能表面度 研究合称1个语数分目。 的现象表现是非常特别	京五世。 12日。	展校会 1	(次此對均为100 JASVOC等代表	2545. 1007 2016 2014 Co.	世光		A 四 形	記録	Shippend	お田本	- 44th	大的個代数	お田袋	技能	计	SVOC	# CENT	国

3.2 地下水样品质控结果汇总

表 11 地下水样品质控结果汇总表

			1 *	-	SANTOR		1	-	北山十川田文	1111			有证据样	4					6-1	和禁回收益				本語	政治安安白	-	全理学中台
	判定依据			型を		化字篇符	4tz	李 李 李 李 李 李 李 李 李 李 李 李 李 李 李 李 李 李 李	音が音	2000年 中部 中部	如	4	選が自行動	単型体	40 40	松十		样品比例 %		加林四代等所開助	-	允许回收率而图%	4	12	日世	- 6	- 3
			鍼	***	2 H 12	2 面积	報 2 件	# E	2 15	2 28	Ž.	報	16m mpl.	允许范围mgL	首	知智	祖世	四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四四	計畫	権品	日本	世界	i A	が	er er er	h 45	里香
	III 1147-2020		en 50	30.0	0.01 後对至度)	30.10pH	100	1 1	~	1	,	1 20.0	8.98 (4.6. 元皇塔)	8,69.9.29 (单位: 天皇邦)	100	,	~	-	~	~	~	,	-	-	-	-	-
	HJ 1075-2019			200	50	8	100	1	*	1	4	1 20.0	1.0 (B.E. NTO)	338.411 (#12: NTU)	100	4	-	-	2	s		~	~	~	-	*	
	HI 700-3014			200	55	530	100	1 20.0	17	Ø,	100	1	-	1	-	1	11	20.0	40.0	90.8-92.1	80-120	70-130	81	14	40.0 100	-	100
	HJ 895-2017		5 1	30.0		\$30	81	1 20.0	114	\$20	100	1 2	,	-	-	-	++	-	900	818	4	70-130	100	1 20	20.0 100	-	100
可萃取性妄治检(Cyc.C.o.)	HI 894-1017		3 1	30.0	0.0	23	100	1 1	~	5	-	2	*	,	2	-	-	20.0	376	~	78-120	~	100	1 25	200 100	-	100
	HI 823-2017		5 1	20.02		510	100	1 20.0	¥.	210	100	1 1	*	7	-	-	-	-	10:00	1001	-	80,120	100		apr. nah		100
	(重点行业企业用地调查屋 量保证与质量拉制技术规定 5 1 2	資政	**	20.0	5.6	310	100	1 20.0	90	510	180	1 20.0	1.48	130-1.52	100	1		_	-	~	1		-		_		8
年間海経	你我就做你让,我保生了表示能到现日未选用功能进力式。"""未次很较级就被到过解准十万法保出班,还许干学者计像进机图。 在是是是是是是是是是是是是是是是是是是是是是是是是是是是是一个人,是是是一个人,是是一个人,是是一个人,是是一个人,是是一个人,他们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	10年	拉方式, 田乃无重 (宋集] (宋集]	一表示。 14、连续 14、连续 15年程序3	f拉多数检 CANTULE Zff. 未完 。你你看来	製结果催子 他均为mg/ 業了1个全 被不提品	7.7 程序 程序 存储	2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	无法计算 2毫次比 1番天数	无还计算值对偏差范围。 控定状比例均为100%。 和相关技术跟范结条做多	時形田。 19%。 未食物	· 经3.	多考 (重点行业企业	5.申证前原保证	1 計画		- X	58									

第 24 页, 共 45 页

针对统计的质控结果,对实验室质量控制情况总结如下:

- (1) 空白试验:根据《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ 164-2020)、《建设用地土壤污染防治 第 1 部分:污染状况调查技术规范》(DB4401/T 102.1-2020)、《建设用地土壤污染防治 第 3 部分:土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 4 部分:土壤挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.5-2021)及检测分析方法等要求,空白样品分析测试结果均低于方法检出限,空白样品合格率为 100%。
- (2)精密度控制:根据《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ 164-2020)、《建设用地土壤污染防治 第 1 部分:污染状况调查技术规范》(DB4401/T 102.1-2020)、《建设用地土壤污染防治 第 3 部分:土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 4 部分:土壤挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.5-2021)及检测分析方法对精密度室内相对偏差的要求,实验室平行、现场平行所测项目的相对偏差均在要求范围内,精密度合格率为 100%。
- (3)准确度控制:根据《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ 164-2020)、《建设用地土壤污染防治 第 1 部分:污染状况调查技术规范》(DB4401/T 102.1-2020)、《建设用地土壤污染防治 第 3 部分:土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 4 部分:土壤挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.5-2021)及检测分析方法对准确度加标回收率的要求,样品加标回收分析、替代物加标回收分析、空白加标回收分析所测项目的加标回收率均在要求范围内,而且实验室的有证标准样品对应所测项目结果均在标准值的控制范围内,准确度合格率为 100%。
- (4)标准曲线校准及仪器稳定性检查:根据《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ 164-2020)、《建设用地土壤污染防治 第 1 部分:污染状况调查技术规范》(DB4401/T 102.1-2020)、《建设用地土壤污染防治 第 3 部分:土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 4 部分:土壤挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规

第 25 页, 共 45 页

报告编号: ZD2024-E042ZK

范》(DB4401/T 102.5-2021)及检测分析方法的要求,标准曲线中间点校准均在标准要求的相对误差范围以内,标准曲线校准合格率为100%,仪器稳定性检查合格率为100%。

综上所述,本项目的空白试验、精密度控制、准确度控制、标准曲线校准、仪器稳定性检查合格率均为100%,符合《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ 164-2020)、《建设用地土壤污染防治 第 1 部分:污染状况调查技术规范》(DB4401/T 102.1-2020)、《建设用地土壤污染防治 第 3 部分:土壤重金属监测质量保证与质量控制技术规范》(DB4401/T 102.3-2020)、《建设用地土壤污染防治 第 4 部分:土壤挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.4-2020)、《建设用地土壤污染防治 第 5 部分:土壤半挥发性有机物监测质量保证与质量控制技术规范》(DB4401/T 102.5-2021)及检测分析方法的相关要求。

第 26 页, 共 45 页

四、实验室质量控制数据统计表

4.1 土壤样品质量控制数据统计表

4.1.1 土壤标准样品分析质量控制结果

质量控制数据汇总表

项目编号		ZD2024-	E042		质控类别	2)	宗验室质拉	样
						实	验室控制样	¥品
分析指标	分析方法	检出限	单位	质控样 編号	质控批次编号	Mill ohr Etr	标准	直范围
84.40.46.78	25.22.22.55	250-501-500	137,835	WE 22	SCSIMILENGOVERISS	渕定值	低	高
рН	HJ 962-2018	1	无量纲	B-062-002	TR24-E042-113	8.65	8.20	8.90
辆	НЈ 491-2019	1	mg/kg	GSS-71	TR24-E042-1-13	58	57	61
锨	НЈ 491-2019	10	mg/kg	GSS-71	TR24-E042-113	43.2	41.3	43.9
镍	HJ 491-2019	3	mg/kg	GSS-71	TR24-E042-1~13	81	77	83
钟	НЈ 491-2019	1	mg/kg	GSS-71	TR24-E042-1~13	178	177	183
氣化物	GB/T 22104-2008	125	mg/kg	GSS-71	TR24-E042-113	870	857	961
结论,实验	室质控样测定结果	均在标	性值范围	以内,质控样》	別定合格。			
	限、测定值、标准		0.0000000000000000000000000000000000000					

第 27 页, 共 45 页

4.1.2 土壤样品全程序空白分析质量控制结果

质量控制数据汇总表

项目编号	ZDZ	2024-E042		质控类别	全和	驴空 白
分析指标	分析方法	检出限	单位	质控采样日期	空白样品浓度	空白值控制范围
氯甲烷	HJ 605-2011	1.0	μg/kg	2024.10.30	ND	<1.0
氯乙烯	HJ 605-2011	1.0	μg/kg	2024.10,30	ND	<1.0
1,1-二氯乙烯	HJ 605-2011	1.0	μg/kg	2024.10,30	ND	<1.0
二氯甲烷	HJ 605-2011	1.5	μg/kg	2024.10.30	ND	<1.5
反式-1,2-二氯乙烯	HJ 605-2011	1.4	μg/kg	2024.10.30	ND	<1,4
1,1-二氯乙烷	НЈ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
顺式-1,2-二氯乙烯	НЈ 605-2011	1.3	µg/kg	2024.10.30	ND	<1.3
氣仿	HJ 605-2011	1.1	μg/kg	2024.10.30	ND	<1.1
1,1,1,-三氯乙烷	НЈ 605-2011	1.3	μg/kg	2024.10.30	ND	<1.3
四氢化碳	HJ 605-2011	1.3	μg/kg	2024.10.30	ND	<1.3
1,2-二氟乙烷	HJ 605-2011	1.3	μg/kg	2024.10.30	ND	<1.3
三氟乙烯	HJ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
1,2-二氯丙烷	HJ 605-2011	1.1	μg/kg	2024.10.30	ND	<1.1
1,1,2-三氯乙烷	НЈ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
四氯乙烯	HJ 605-2011	1.4	μg/kg	2024.10.30	ND	<1.4
1,1,1,2-四氯乙烷	HJ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
1,1,2,2-四氯乙烷	HJ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
1,2,3-三氯丙烷	HJ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
丙酮	HJ 605-2011	1.3	μg/kg	2024.10.30	ND	<1.3

各往: 1、ND表示小于方法检出限; 2、检出限、空白样品浓度、空白值控制范围的单位均为鉴列单位列的单位。

4.1.3 土壤样品运输空白分析质量控制结果

质量控制数据汇总表

项目编号	ZD20	24-E042		质控类别	运	输空 白
分析指标	分析方法	检出限	单位	质控采样日期	空白样晶浓	空白值控制范围
氯甲烷	НЈ 605-2011	1.0	μg/kg	2024.10.30	ND	<1.0
氯乙烯	НЈ 605-2011	1.0	µg/kg	2024.10.30	ND	<1.0
1,1-二氯乙烯	HJ 605-2011	1.0	µg/kg	2024.10.30	ND	<1.0
二氯甲烷	НЈ 605-2011	1.5	μg/kg	2024,10.30	ND	<1.5
反式-1,2-二氯乙烯	HJ 605-2011	1.4	μg/kg	2024.10.30	ND	<1.4
1,1-二氯乙烷	НЈ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
顺式-1,2-二氟乙烯	HJ 605-2011	1.3	μg/kg	2024,10.30	ND	<1.3
氯仿	HJ 605-2011	1.1	μg/kg	2024,10.30	ND	<1.1
1,1,1,-三氯乙烷	HJ 605-2011	1.3	µg/kg	2024.10.30	ND	<1.3
四氯化碳	HJ 605-2011	1.3	μg/kg	2024,10.30	ND	<1.3
1,2-二氯乙烷	НЈ 605-2011	1.3	μg/kg	2024.10.30	ND	<1.3
三氯乙烯	HJ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
1,2-二氯丙烷	HJ 605-2011	1.1	μg/kg	2024.10.30	ND	<1.1
1,1,2-三氯乙烷	HJ 605-2011	1.2	µg/kg	2024.10.30	ND	<1.2
四氯乙烯	HJ 605-2011	1.4	μg/kg	2024.10.30	ND	<1,4
1,1,1,2-四氯乙烷	НЈ 605-2011	1.2	μg/kg	2024.10.30	ND	<1,2
1,1,2,2-四氯乙烷	HJ 605-2011	1.2	μg/kg	2024.10.30	ND	<1.2
1,2,3-三氯丙烷	НЈ 605-2011	1.2	µg/kg	2024.10.30	ND	<1.2
丙酮	НЈ 605-2011	1.3	μg/kg	2024.10.30	ND	<1.3
t论: 所有分析指标均	小于方法检出限。	运输空白	合格。			

第 29 页, 共 45 页

4.1.4 土壤样品实验室空白分析质量控制结果

项目编号	ZD2024	4-E042		质控类别	实验室空	白榉
分析指标	分析方法	检出限	単位	质控批次编号	空白样品浓度	控制范围
無化物	GB/T 22104-2008	125	mg/kg	TR24-E042-1~13	ND	<125
無化物	GB/T 22104-2008	125	mg/kg	TR24-E042-113	ND	<125
氰化物	HJ 745-2015	0.01	mg/kg	TR24-E042-1~13	ND	< 0.01
氰化物	HJ 745-2015	0.01	mg/kg	TR24-E042-1~13	ND	< 0.01
钏	HJ 491-2019	1	mg/kg	TR24-E042-113	ND	<1
桐	HJ 491-2019	1	mg/kg	TR24-E042-113	ND	<1
铅	HJ 491-2019	10	mg/kg	TR24-E042-113	ND	<10
48	HJ 491-2019	10	mg/kg	TR24-E042-113	ND	<10
保	HJ 491-2019	3	mg/kg	TR24-E042-113	ND	<3
42	HJ 491-2019	3	mg/kg	TR24-E042-1~13	ND	<3
幹	HJ 491-2019	1	mg/kg	TR24-E042-1~13	ND	<1
**	HJ 491-2019	1	mg/kg	TR24-E042-1~13	ND	<1
萘	HJ 834-2017	0.09	mg/kg	TR24-E042-113	ND	<0.09
苯并 (n) 蔗	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
蔺	HJ 834-2017	0.1	mg/kg	TR24-E042-1~13	ND ND	<0.1
苯并(b) 类蒽	HJ 834-2017	0.2	mg/kg	TR24-E042-113	ND ND	<0.2
苯并 (k) 荧蒽	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND ND	<0.1
恭并 (a) 芘	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
茚并 (1,2,3-cd) 芘	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
二苯并 (a,h) 蒽	HJ 834-2017	0.1	mg/kg	TR24-E042-1~13	ND	<0.1
苊烯	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
旌	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
芴	HJ 834-2017	0.1	mg/kg	TR24-E042-1-13	ND	<0.1
#	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
蒽	HJ 834-2017	0.1	mg/kg	TR24-E042-1~13	ND	<0.1
荧蒽	HJ 834-2017	0.1	mg/kg	TR24-E042-1-13	ND	<0.1
芘	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
恭并[g,h,i]花	HJ 834-2017	0.1	mg/kg	TR24-E042-113	ND	<0.1
异佛尔酮	HJ 834-2017	0.1	mg/kg	TR24-E042-1-13	ND	<0.1
氣甲烷	HJ 605-2011	1.0	μg/kg	TR24-E042-1~15	ND	<1.0
氯乙烯	HJ 605-2011	1.0	μg/kg	TR24-E042-1~15	ND	<1.0
1,1-二氟乙烯	HJ 605-2011	1.0	µg/kg	TR24-E042-1-15	ND	<1.0
二氯甲烷	HJ 605-2011	1.5	μg/kg	TR24-E042-115	ND	<1.5
反式-1,2-二氯乙烯	HJ 605-2011	1.4	μg/kg	TR24-E042-115	ND	<1.4
1,1-二氯乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-115	ND	<1.2
顺式-1,2-二氟乙烯	HJ 605-2011	1.3	μg/kg	TR24-E042-1-15	ND	<1.3
銀仿	HJ 605-2011	1.1	pg/kg	TR24-E042-115	ND ND	<1.1
1,1,1,-三氟乙烷	HJ 605-2011	1.3	µg/kg	TR24-E042-1-15	ND ND	<1.3
四氯化酸	НЈ 605-2011	1.3	µg/kg	TR24-E042-1~15	ND	<1.3
1,2-二氯乙烷	НЈ 605-2011	1.3	µg/kg	TR24-E042-115	ND ND	<1.3

第 30 页, 共 45 页

报告编号: ZD2024-E042ZK

ZD202	4-E042		质控类别	实验室空	白样
分析方法	检出限	单位	质控批次编号	空白样品浓度	控制范围
HJ 605-2011	1.2	µg/kg	TR24-E042-1-15	ND	<1.2
HJ 605-2011	1.1	μg/kg	TR24-E042-1~15	ND	<1.1
НЈ 605-2011	1.2	μg/kg	TR24-E042-1~15	ND	<1.2
HJ 605-2011	1,4	µg/kg	TR24-E042-1~15	ND	<1.4
НЈ 605-2011	1.2	μg/kg	TR24-E042-115	ND	<1.2
HJ 605-2011	1.2	μg/kg	TR24-E042-1~15	ND	<1.2
НЈ 605-2011	1.2	pg/kg	TR24-E042-115	ND	<1.2
HJ 605-2011	1.3	μg/kg	TR24-E042-1~15	ND	<1.3
НЈ 1021-2019	6	mg/kg	TR24-E042-1-13	ND	<6
)于方法检出限。实	食室空白測定	合格。		- A	111
	分析方法 HJ 605-2011 HJ 605-2011 HJ 605-2011 HJ 605-2011 HJ 605-2011 HJ 605-2011 HJ 605-2011 HJ 605-2011	HJ 605-2011 1.2 HJ 605-2011 1.1 HJ 605-2011 1.2 HJ 605-2011 1.4 HJ 605-2011 1.2 HJ 605-2011 1.2 HJ 605-2011 1.2 HJ 605-2011 1.3 HJ 1021-2019 6	今析方法 检出限 単位 HJ 605-2011 1.2 pg/kg HJ 605-2011 1.1 pg/kg HJ 605-2011 1.2 pg/kg HJ 605-2011 1.4 pg/kg HJ 605-2011 1.2 pg/kg HJ 605-2011 1.3 pg/kg	今所方法 检出限 単位	分析方法 检出限 単位 质控批次線号 空自样品浓度 HJ 605-2011 1.2 μg/kg TR24-E042-1-15 ND HJ 605-2011 1.1 μg/kg TR24-E042-1-15 ND HJ 605-2011 1.2 μg/kg TR24-E042-1-15 ND HJ 605-2011 1.4 μg/kg TR24-E042-1-15 ND HJ 605-2011 1.2 μg/kg TR24-E042-1-15 ND HJ 605-2011 1.3 μg/kg TR24-E042-1-15 ND HJ 605-2011 1.3 μg/kg TR24-E042-1-15 ND HJ 1021-2019 6 mg/kg TR24-E042-1-13 ND

第 31 页, 共 45 页

4.1.5 土壤样品现场平行分析质量控制结果

项目编号	70202		T	数据汇总表	1	988.19	W7 4 - 114	
24 17 399 -2	ZD2024-E042			质控类别	现场平行样			
分析指标	分析方法	检出限	单位	平行样品编号	样品浓 度	千行样品次 平行样品 浓度	相对偏	相对偏差 控制范围
pН	HJ 962-2018	1	无量绍	TR24-E042-1, 2	8.03	8.16	差 % 0.13	≤0.3pH
pH	HJ 962-2018	1	无量纲	TR24-E042-10, 11	11.22	10.99	0.23	≤0.3pH
水分	HJ 613-2011	100	%	TR24-E042-1、2	8.6	8.5	0.1	≤1.5
水分	HJ 613-2011		96	TR24-E042-10, 11	48.6	47.5	1.1	≤5
氧化物	HJ 745-2015	0.01	mg/kg	TR24-E042-1, 2	ND	ND		≤25
氰化物	HJ 745-2015	0.01	mg/kg	TR24-E042-10, 11	ND	ND		≤25
無化物	GB/T 22104-2008	125	mg/kg	TR24-E042-1-2	505	470	3.6	≤10
無化物	OB/T 22104-2008	125	mg/kg	TR24-E042-10, 11	654	590	5.1	≤10
彻	НЈ 491-2019	1	mg/kg	TR24-E042-1, 2	1.77*10	1.73*101	1.1	≤20
柳	HJ 491-2019	1	mg/kg	TR24-E042-10. 11	12	11	4.3	≤20
ta ta	HJ 491-2019	10	mg/kg	TR24-E042-1, 2	365	370	0.7	≤20
18	HJ 491-2019	10	mg/kg	TR24-E042-10, 11	53	55	1.9	≤20
銀	НЈ 491-2019	3	mg/kg	TR24-E042-1, 2	40	42	2.4	≤20
存	HJ 491-2019	3	mg/kg	TR24-E042-10, 11	10	10	0.0	≤20
锌	HJ 491-2019	1	mg/kg	TR24-E042-1- 2	561	500	5.7	≤20
锌	HJ 491-2019	1	mg/kg	TR24-E042-10, 11	73	71	1.4	≤20
萘	HJ 834-2017	0.09	mg/kg	TR24-E042-1, 2	ND	ND		<40
茂烯	HJ 834-2017	0.09	mg/kg	TR24-E042-1, 2	ND	ND		<40
苊	HJ 834-2017	0.1	mg/kg	TR24-E042-1、2	ND	ND		<40
芴	HJ 834-2017	0.08	mg/kg	TR24-E042-1, 2	ND	ND		<40
菲	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
並	НЈ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
荧蒽	НЈ 834-2017	0.2	mg/kg	TR24-E042-1, 2	ND	ND		<40
旌	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
苯并 (a) 應	HJ 834-2017	0.1	mg/kg	TR24-E042-1-2	ND	ND		<40
酒	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
岩井(b) 荧蒽	HJ 834-2017	0.2	mg/kg	TR24-E042-1, 2	ND	ND		<40
苯并(k) 荧蒽	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
苯并 (a) 芘	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
節并(1,2,3-cd)芘	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
二苯并(a,h)整	HJ 834-2017	1.0	mg/kg	TR24-E042-1, 2	ND	ND		<40
苯并 (g,h,i) 莊	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40
异佛尔酮	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND	-	<40
恭	HJ 834-2017	0.09	mg/kg	TR24-E042-1, 2	ND	ND		<40
港烯	HJ 834-2017	0.09	mg/kg	TR24-E042-1, 2	ND	ND	*	<40
苊	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND		<40

第 32 页, 共 45 页

报告编号: ZD2024-E042ZK

项目编号	ZD2024-E042			质控类别	现场平行样				
200000000000000000000000000000000000000	分析方法	捡出限	单位		1 15 11 MALESTON			相对偏差	
分析指标				平行样品编号	样品浓 度	平行样品 液度	相对偏差%	控制范围	
莇	HJ 834-2017	0.08	mg/kg	TR24-E042-1, 2	ND	ND	*	<40	
#	HJ 834-2017	0.1	mg/kg	TR24-E042-1、2	ND	ND		<40	
蔥	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND	*	<40	
类額	HJ 834-2017	0.2	mg/kg	TR24-E042-1, 2	ND	ND		<40	
FE	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND	4	<40	
苯井 (a) 蔥	HJ 834-2017	0.1	mg/kg	TR24-E042-1-2	ND	ND	*	<40	
茄	HJ 834-2017	0.1	rng/kg	TR24-E042-1, 2	ND	ND	-	<40	
苯并 (b) 荧蒽	HJ 834-2017	0.2	mg/kg	TR24-E042-1、2	ND	ND	*	<40	
苯并(k) 荧蓝	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND	- 7:	<40	
苯并 (a) 芘	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND	*	<40	
茚并 (1,2,3-cd) 芘	HJ 834-2017	0.1	mg/kg	TR24-E042-1, 2	ND	ND	*	<40	
二苯并 (a,h) 蘇	HJ 834-2017	0.1	mg/kg	TR24-E042-1-2	ND	ND		<40	
苯并 (g,h,i) 菲	HJ 834-2017	0,1	mg/kg	TR24-E042-1- 2	ND	ND	-	<40	
异佛尔酮	НЈ 834-2017	0,1	mg/kg	TR24-E042-1, 2	ND	ND		<40	
二溴氟甲烷(替代物)	НЈ 605-2011		μg/L	TR24-E042-1-2	41.2122	43.4907	2.7	<25	
甲苯-D8(替代物)	HJ 605-2011		µg/L	TR24-E042-1, 2	42.8741	43.4163	0.6	<25	
4-溴氰苯(替代物)	НЈ 605-2011		µg/L	TR24-E042-1, 2	55.1170	58.1894	2.7	<25	
氯甲烷	HJ 605-2011	1.0	µg/kg	TR24-E042-1, 2	ND	ND	2	<25	
氨乙烯	НЈ 605-2011	1.0	μg/kg	TR24-E042-1, 2	ND	ND		<25	
1,1-二氯乙烯	HJ 605-2011	1.0	µg/kg	TR24-E042-1, 2	ND	ND	- 1	<25	
二氮甲烷	HJ 605-2011	1.5	μg/kg	TR24-E042-1, 2	ND	ND		<25	
反式-1,2-二氯乙烯	HJ 605-2011	1.4	µg/kg	TR24-E042-1 . 2	ND	ND		<25	
1,1-二氮乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-1、2	ND	ND	2	<25	
顺式-1,2-二氯乙烯	НЈ 605-2011	1.3	µg/kg	TR24-E042-1, 2	ND	ND		<25	
級紡	НЈ 605-2011	1.1	µg/kg	TR24-E042-1, 2	ND	ND	-	<25	
1,1,1,-三氯乙烷	HJ 605-2011	1.3	μg/kg	TR24-E042-1, 2	ND	ND		<25	
四氟化碳	HJ 605-2011	1.3	μg/kg	TR24-E042-1, 2	ND	ND		<25	
1,2-二氯乙烷	НЈ 605-2011	1.3	µg/kg	TR24-E042-1, 2	ND	ND	8	<25	
三氰乙烯	HJ 605-2011	1.2	µg/kg	TR24-E042-1、2	ND	ND	- 2	<25	
1,2-二氯丙烷	HJ 605-2011	1.1	µg/kg	TR24-E042-1, 2	ND	ND		<25	
1,1,2-三氯乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-1-2	ND	ND		<25	
四氟乙烯	HJ 605-2011	1.4	μg/kg	TR24-E042-1 . 2	ND	ND	-	<25	
1,1,1,2-四級乙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-1 . 2	ND	ND		<25	
1,1,2,2-四級乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-1、2	ND	ND		<25	
1,2,3-三氟丙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-1、2	ND	ND		<25	
丙酮	HJ 605-2011	1.3	μg/kg	TR24-E042-1, 2	ND	ND	,	<25	
二溴氯甲烷(替代物)	HJ 605-2011	1	µg/L	TR24-E042-10, 11	48.8860	49,9471	1.1	<25	

第 33 页, 共 45 页

报告编号: ZD2024-E042ZK

项目编号	项目编号 ZD2024-E042				现场平行样			
分析指标	分析方法	检出限	单位		平行样品浓度			相对偏差
				平行样品编号	样品浓 度	平行桿品	相対偏差%	控制范围 %
甲苯·D8(蓄代物)	HJ 605-2011	1 -	µg/L	TR24-E042-10, 11	46,0783	46.2325	0.2	<25
4-溴氰萃(替代物)	HJ 605-2011		μg/L	TR24-E042-10, 11	59,0803	57,7795	1.1	<25
氯甲烷	HJ 605-2011	1.0	μg/kg	TR24-E042-10, 11	ND	ND		<25
無乙烯	HJ 605-2011	1.0	µg/kg	TR24-E042-10, 11	ND	ND	×	<25
1,1-二氟乙烯	HJ 605-2011	1.0	pg/kg	TR24-E042-10, 11	ND	ND	-	<25
二級甲烷	HJ 605-2011	1.5	μg/kg	TR24-E042-10, 11	ND	ND		<25
反式-1,2-二氟乙烯	HJ 605-2011	1.4	µg/kg	TR24-E042-10, 11	ND	ND		<25
1,1-二氯乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-10 . 11	ND	ND	2	<25
顺式-1,2-二氟乙烯	HJ 605-2011	1.3	µg/kg	TR24-E042-10, 11	ND	ND	*	<25
氣仿	НЈ 605-2011	1.1	μg/kg	TR24-E042-10、11	ND	ND	3	<25
1,1,1,-三氯乙烷	HJ 605-2011	1.3	µg/kg	TR24-E042-10, 11	ND	ND	9	<25
四氟化碳	HJ 605-2011	1.3	µg/kg	TR24-E042-10, 11	ND	ND		<25
1,2-二氯乙烷	HJ 605-2011	1.3	μg/kg	TR24-E042-10, 11	ND	ND		<25
三氯乙烯	HJ 605-2011	1.2	µg/kg	TR24-E042-10、11	ND	ND		<25
1,2-二氟丙烷	HJ 605-2011	1.1	µg/kg	TR24-E042-10, 11	ND	ND		<25
1,1,2-三氯乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-10, 11	ND	ND	-	<25
四氯乙烯	НЈ 605-2011	1.4	μg/kg	TR24-E042-10、11	ND	ND		<25
1,1,1,2-四氯乙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-10, 11	ND	ND	-	<25
1,1,2,2-四氯乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-10, 11	ND	ND		<25
1,2,3-三氯丙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-10, 11	ND	ND		<25
丙酮	НЈ 605-2011	1.3	µg/kg	TR24-E042-10, 11	ND	ND	-	<25
石油烃 (C ₁₀ -C ₄₁)	HJ 1021-2019	6	mg/kg	TR24-E042-1, 2	22	24	4.3	≤25
石油烃 (C ₁₀ -C ₄₁)	HJ 1021-2019	6	mg/kg	TR24-E042-10, 11	9	9	0.0	≤25

結论、環境平行測定結果均在平行控制范围以内、现场平行測定合格。 备注。1、样品款度、平行样品款度、检出级的单位均为坚列单位列的单位; 2、ND表示小于方法彼出级。

第 34 页, 共 45 页

4.1.6 土壤样品实验室平行分析质量控制结果

项目编号	ZD2024	-E042		质控类别		李验室	平行样	
分析指标	分析方法	检出限	单位	平行样品编号		行样品旅/ 平行样品 浓度	£	相对偏差 控制范围
水分	НЈ 613-2011		96	TR24-E042-1	9.3	7.8	1.5	≤1.5
рН	HJ 962-2018	1	无量纲	TR24-E042-1	8.03	8.21	0.18	≤0.3pH
pН	HJ 962-2018	1	无量纲	TR24-E042-11	10.99	11.03	0.04	≤0.3pH
氰化物	HJ 745-2015	0.01	mg/kg	TR24-E042-1	ND	ND	17	≤25
氰化物	НЈ 745-2015	0.01	mg/kg	TR24-E042-11	ND	ND	-	≤25
無化物	GB/T 22104-2008	125	mg/kg	TR24-E042-1	503	507	0.4	≤10
無化物	GB/T 22104-2008	125	mg/kg	TR24-E042-13	698	688	0.7	≤10
81	HJ 491-2019	1	mg/kg	TR24-E042-1	1.75×10 ³	1.80×10 ³	1.4	≤20
48	HJ 491-2019	10	mg/kg	TR24-E042-1	361	369	1.1	≤20
极	НЈ 491-2019	3	mg/kg	TR24-E042-1	41	40	1.2	≤20
(7	HJ 491-2019	1.	mg/kg	TR24-E042-1	578	544	3.0	≤20
恭	HJ 834-2017	0.09	mg/kg	TR24-E042-1	ND	ND	*	<40
恋婦	HJ 834-2017	0.09	mg/kg	TR24-E042-1	ND	ND		<40
苊	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND	10	<40
芴	HJ 834-2017	0.08	mg/kg	TR24-E042-1	ND	ND		<40
#	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
整	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
类煎	HJ 834-2017	0.2	mg/kg	TR24-E042-1	ND	ND		<40
芘	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
苯并 (a) 蔥	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
肅	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND	*	<40
苯并 (b) 荧蒽	HJ 834-2017	0.2	mg/kg	TR24-E042-1	ND	ND		<40
苯非 (k) 荧蒽	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND	-	<40
苯并 (a) 芘	НЈ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
茚并 (1,2,3-ed) 芘	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
二苯并 (a,h) 蒽	НЈ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND	-	<40
苯并 (g,h,i) 菲	НЈ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
异佛尔酮	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	ND		<40
二溴氰甲烷(替代物)	HJ 605-2011	1	µg/L	TR24-E042-3	41,2122	43.4907	2.7	<25
甲苯-D8(替代物)	HJ 605-2011	1	μg/L	TR24-E042-3	42.8741	43.4163	0.6	<25
4-溴氯苯(替代物)	HJ 605-2011	1	μg/L	TR24-E042-3	55.1170	58.1894	2.7	<25
二溴氰甲烷(替代物)	НЈ 605-2011	-	µg/kg	TR24-E042-3	ND	ND	- 5	<25
甲苯-D8(替代物)	HJ 605-2011	-	μg/kg	TR24-E042-3	ND	ND		<25
4-溴氰苯(替代物)	НЈ 605-2011		pg/kg	TR24-E042-3	ND	ND		<25
氣甲烷	HJ 605-2011	1.0	ру/кд	TR24-E042-3	ND	ND		<25
氯乙烯	HJ 605-2011	1.0	µg/kg	TR24-E042-3	ND	ND		<25

第 35 页, 共 45 页

广州中德环境技术研究院有限公司

ZD-JL-YS-100-32

项目编号	ZD202	4-E042		质控类别		实验量	平行样	
a ar he he	4 14 1 11	000101000	101.000	_20000000000000000000000000000000000000		P行样品依		相对偏差
分析指标	分析方法	检出限	单位	平行样品编号	样品浓 度	平行样品 浓度	相对偏 差%	控制范围 %
1,1-二氯乙烯	HJ 605-2011	1.0	μg/kg	TR24-E042-3	ND	ND		<25
二氯甲烷	НЈ 605-2011	1.5	μg/kg	TR24-E042-3	ND	ND	-	<25
反式-1,2-二氯乙烯	HJ 605-2011	1.4	ид/ка	TR24-E042-3	ND	ND		<25
1,1-二氯乙烷	НЈ 605-2011	1.2	µg/kg	TR24-E042-3	ND	ND		<25
顺式-1,2-二氮乙烯	HJ 605-2011	1.3	µg/kg	TR24-E042-3	ND	ND		<25
銀仿	HJ 605-2011	1.1	µg/kg	TR24-E042-3	ND	ND	23	<25
1,1,1,-三氯乙烷	HJ 605-2011	1.3	μg/kg	TR24-E042-3	ND	ND	47	<25
四氟化碳	HJ 605-2011	1.3	µg/kg	TR24-E042-3	ND	ND	10	<25
1,2-二無乙烷	НЈ 605-2011	1.3	μg/kg	TR24-E042-3	ND	ND	- 5	<25
三氯乙烯	НЈ 605-2011	1.2	μg/kg	TR24-E042-3	ND	ND		<25
1,2-二氯丙烷	HJ 605-2011	1.1	µg/kg	TR24-E042-3	ND	ND	(4)	<25
1,1,2-三氯乙烷	HJ 605-2011	1.2	μg/kg	TR24-E042-3	ND	ND		<25
四氯乙烯	НЈ 605-2011	1.4	μg/kg	TR24-E042-3	ND	ND		<25
1,1,1,2-四氯乙烷	НЈ 605-2011	1.2	μg/kg	TR24-E042-3	ND	ND	120	<25
1,1,2,2-四氯乙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-3	ND	ND	188	<25
1,2,3-三氯丙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-3	ND	ND		<25
丙酮	HJ 605-2011	1.3	μg/kg	TR24-E042-3	ND	ND		<25
二溴氮甲烷(替代物)	HJ 605-2011	7	µg/L	TR24-E042-2、2JB	49.1753	52.2981	3.1	<25
甲苯-D8(普代物)	HJ 605-2011	1	μg/L	TR24-E042-2. 2JB	50,6596	51.4490	0.8	<25
4-溴氯苯(替代物)	HJ 605-2011	1	μg/L	TR24-E042-2, 2JB	63.5082	49.1078	12.8	<25
石油烃 (C ₁₀ -C ₄₀)	HJ 1021-2019	6	mg/kg	TR24-E042-1	22	22	0.0	≤25

每26.1、大量至17面长的水均在170万的化面以内,安据至170两定省格。 备注,1、样品浓度,平57样品浓度、捡出限的单位均为整列单位列的单位。 2、ND表示小于方法检出限。

第8页, 共16页

生效日期: 2024.03.01

第 36 页, 共 45 页

4.1.7 土壤样品加标回收质量分析控制结果

广州中德环境技术研究院有限公司

ZD-JL-YS-100-33 A/0

质量控制数据汇总表

项目编号	ZD20	24-E042		质控类别			加林	示样		
					200,000		实验室	加标样品的	260	
分析指标	分析方法	检出限	单位	加标样品编号	样品浓 度	加标量 (µg)	加标样品浓度	加标样品 回收率 (%)	低(%)	高(%
氰化物	НЈ 745-2015	0.01	mg/kg	TR24-E042-6	ND	100	0.11	103.6	70	12
氰化物	HJ 745-2015	0.01	mg/kg	TR24-E042-13	ND	100	0.10	88.5	70	12
禁	HJ 834-2017	0.09	mg/kg	TR24-E042-1	ND	5.0	0.201	75.7	39	95
放地	HJ 834-2017	0.09	mg/kg	TR24-E042-1	ND	5.0	0.225	84.8	56	9
旌	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.205	77.2	36	10
荷	HJ 834-2017	0.08	mg/kg	TR24-E042-1	ND	5.0	0.207	78.0	71	9
#	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.206	77.6	60	14
蔥	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.213	80.3	65	10
荧蒽	HJ 834-2017	0.2	mg/kg	TR24-E042-1	ND	5.0	0.200	75.3	63	11
推	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.301	113.5	77	11
苯并 (a) 煎	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.262	98.7	73	12
雌	НЈ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.299	112.7	54	12
華井 (b) 费蕙	HJ 834-2017	0.2	mg/kg	TR24-E042-1	ND	5.0	0.172	64.7	59	12
苯并 (k) 贵蒽	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.203	76.4	74	1
孝并 (a) 芘	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.184	69.2	45	1
茚并 (1,2,3-cd) 花	НЈ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.156	58.8	52	1.
二苯并 (a,h) 應	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.178	67.0	64	1
苯并 (g,h,i) 菲	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.179	67.2	49	13
异佛尔酮	HJ 834-2017	0.1	mg/kg	TR24-E042-1	ND	5.0	0.225	84.7	62	5
氣甲烷	HJ 605-2011	1.0	μg/kg	TR24-E042-2	ND	0.25	62.7	76.9	70	1
氰乙烯	HJ 605-2011	1.0	µg/kg	TR24-E042-2	ND	0.25	86.8	106.6	70	1
1,1-二氢乙烯	НЈ 605-2011	1.0	µg/kg	TR24-E042-2	ND	0.25	92.4	113.4	70	1
二氧甲烷	НЈ 605-2011	1.5	µg/kg	TR24-E042-2	ND	0.25	93.2	114.4	70	1
反式-1,2-二氧乙烯	НЈ 605-2011	1.4	µg/kg	TR24-E042-2	ND	0.25	82.9	101.7	70	1
1,1-二氯乙烷	НЈ 605-2011	1.2	µg/kg	TR24-E042-2	ND	0.25	87.7	107.6	70	1
顺式-1,2-二氧乙烯	НЈ 605-2011	1.3	µg/kg	TR24-E042-2	ND	0.25	82.0	100.6	70	1
氣仿	НЈ 605-2011	1.1	μg/kg	TR24-E042-2	ND	0,25	84.7	103.9	70	1
1,1,1,-三氧乙烷	НЈ 605-2011	1.3	µg/kg	TR24-E042-2	ND	0.25	92.3	113.3	70	1.
四氧化碳	HJ 605-2011	1.3	µg/kg	TR24-E642-2	ND	0.25	103.4	126.9	70	1
1,2-二氧乙烷	HJ 605-2011	1.3	µg/kg	TR24-E042-2	ND	0.25	92.1	113.0	70	1
三氰乙烯	НЈ 605-2011	1.2	µg/kg	TR24-E042-2	ND	0.25	79.2	97.2	70	1
1,2-二氯丙烷	НЈ 605-2011	1.1	µg/kg	TR24-E042-2	ND	0.25	85.0	104.3	70	1
1.1.2-三氧乙烷	НЈ 605-2011	1,2	µg/kg	TR24-E042-2	ND	0.25	90.9	111.5	70	1
四氧乙烯	НЈ 605-2011	1,4	µg/kg	TR24-E042-2	ND	0.25	79.1	97.1	70	1
1,1,1,2-四氨乙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-2	ND	0.25	91.8	112.6	70	1
1,1,2,2-四氧乙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-2	ND	0.25	92.2	113.1	70	1
1,2,3-三氧丙烷	HJ 605-2011	1.2	µg/kg	TR24-E042-2	ND	0.25	96.8	118.8	70	1

第9页,共16页

生效日期: 2024.03.01

第 37 页, 共 45 页

报告编号: ZD2024-E042ZK

广州中德环境技术研究院有限公司

ZD-JL-YS-100-33 A/0

			1			实验室加标样品控制						
分析指标	分析方法	检出限	单位	加标样品编号	样品報 度	加标量 (µg)	加标样品浓度	加标样品 回收率 (%)	低(%)	高(%		
内侧	HJ 605-2011	1.3	µg/kg	TR24-E042-2	ND	0.25	103.7	127.3	70	13		
石油烃 (C ₁₀ -C ₄₀)	HJ 1021-2019	6	mg/kg	KBI	ND	310	27	92.4	70	120		
石油烃 (C ₁₀ -C ₄₀)	HJ 1021-2019	6	mg/kg	TR24-E042-1	22	310	48	80.0	50	14		

结论: 加标样品回收率均在控制范围以内, 加标回收测定合格。

各注: 1、加标回收率(%分(加标样品浓度-拌品浓度)"取样量*干重/加标量*100; 2、捡出银、样品浓度、加标样品浓度单位均为整列单位的单位。

第10页,共16页

生效日期: 2024.03.01

第 38 页, 共 45 页

4.1.8 土壤样品 SVOCs 替代物加标回收质量控制结果

原带物制		

双目倫里	X0003	4-E0+2		但代告宗改革		分析方性			HURS	-311.7		
州代初名称:	2.5	EA)	54	H-15	W.35	\$-05	2-製	対策	246.3	開業新	445.03	44.45
мана	規定 拡度 (ppink)	田仓丰 (%)	例定 抗度 (pg/ml)	割款率 11	完定 it元 (ppint)	超效率 55	Hite Hite (ugird)	形数年 14	10 to 10 to (pg/sd.)	四枚単	()	田依年 95
EBI	16579	51.5	2.5922	51.8	3,4126	(4.3	2.8519	57.0	3.1333	43.1	4.5428	909
TR21-E012-1	2.5345	51.7	2.4109	48.2	3.2611	61.4	1.7848	55.7	3.9684	59.2	4.4234	88.5
TRJ4-8842-1P	2.65 ET	514	2.4492	49.0	3.2330	64.7	2.6440	52.9	2.8514	57.1	4.4974	3.9.9
TR24-E041-13B	14039	41.1	2.5194	504	3.3913	66.2	2.6365	52.7	3.3942	67.9	4.000	832
TR24 E642-2	25133	58.3	2.4777	49.6	12211	84.4	17995	58.0	2.9241	51.5	4.3923	35.8
TR24-E042-3	2.6526	51.0	2.5090	10.1	3.1479	43.0	2.7113	54.2	2.7695	55.4	4.4712	89.4
TR24-EG42-4	15035	38.9	2 4691	49.4	3.2130	74.3	2.6500	52.6	2:7579	55.3	4301	86.9
TR24 E042-5	24011	52.2	2.3968	470	31242	62.5	1.6782	524	2.6811	53.6	4 2745	855
TR24 E042-6	14511	492	2.5080	10:1	3,2159	64.3	2.7039	54.1	2.7719	55.4	4.6930	931
TR24-F042-7	2.5586	31.6	2.3703	474	3.1270	62.5	2 6549	523	2.5951	52.0	4.6(05	88.2
TR24-8042-8	24941	52.7	2.5307	10.6	31568	63.1	1.8271	56.5	271.11	542	4 5628	913
TR24-E042-9	1.0016	512	2.4503	49.5	3,1261	621	2.614)	53.7	3.7732	55.5	4 3348	87,7
TR24-E042-16	2 50 17	58.0	2.4917	\$9.0	3,2117	61.2	2.8109	56.2	26311	528	4.5933	913
TE24-E042-11	27019	54.6	2 5776	50.5	31624	63.3	2.7950	55.7	2.7046	54.1	4.5603	91.4
TE24-E042-12	2.5689	31.2	2.4004	49.3	38011	61.5	1.7513	560	2.9515	55.0	4.440G	181
T\$24-E042-13	24445	53.9	2.4730	49.5	3.1467	62.9	2.7729	55.5	2.5861	51.6	4.4370	18.7
作品15日曜 (主			3,075	5	3	5		5	10000000			
于均田牧羊中	- 31	7	41	9.5		19	. 54	17	38	3	21	8
の政策を指揮を	1	7	1	2		.7	1.	6	- 4	1		
2838	46.5	570	455	53.2	50.9	69.0	50.0	19.4	0.6	49.0	81.0	96.7
投資(范標16	46.5	-57.0	45.9	-53.2	58.9	-69.0	50.0	-59.4	43.6	49.0	31,0	96.7
1位。各代物的如5 1位。1、如析四収 3、卷代物原 3、按析范围	平(%)+(加 样品现度的深度		原材品测定体度			1.制度合格。						

第 39 页, 共 45 页

4.1.9 土壤样品 VOCs 替代物加标回收质量控制结果

质量控制数据汇总表

项目编号	ZD2024-E042	质拉类别	替代物构	品加标	分析方法	HJ 605	-2011
替代物名称	二溴氟甲烷	(替代物)	甲苯·D8(昔代物)	4-溴氰萃(替代物)	
加标样品编号	测定浓度 (pg/L)	回收率 (%)	別定法度 (pg/L)	回收率 (%)	測定浓度 (μg/L)	回牧率 (%)	备注
KB1	47.7050	95.4	49.3113	98.6	61.6626	123.3	
TR24-E042-14	38.3072	76.6	46.9271	93.9	50.4715	100.9	
TR24-E042-15	37.2022	74.4	48.3613	96.7	48.1111	96.2	
TR24-E042-1	46,9033	93.8	49.7309	99.5	63.9851	128.0	
TR24-E042-2	49.1753	98.4	50.6596	101.3	63.5082	127.0	
TR24-E042-2JB	52.2981	104.6	51.4490	102.9	49.1078	98.2	
TR24-E042-3	41.2122	82.4	42.8741	85.7	55.1170	110.2	
TR24-E042-3P	43.4907	87.0	43,4163	86.8	58,1894	116.4	
TR24-E042-4	44.7173	89.4	43.5636	87.1	57.2891	114.6	
TR24-E042-5	36.5229	73.0	51.2061	102.4	56,7649	113.5	
TR24-E042-6	42.0211	84.0	44.5921	89.2	56.5957	113.2	
TR24-E042-7	44.4648	88.9	43.3375	86.7	59.0842	118.2	
TR24-H042-8	45.0917	90.2	43.4447	86.9	55,2239	110.4	
TR24-E042-9	36.6427	73.3	50,6261	101.3	53.9099	107.8	
TR24-E042-10	48.8860	97.8	46.0783	92.2	59.0803	118.2	
TR24-E042-11	49,9471	99.9	46.2325	92.5	57,7795	115.6	
TR24-E042-12	49.2765	98.6	46.0166	92.0	56.2989	112.6	
TR24-E042-13	40,6706	81.3	53.5407	107.1	57.2790	114.6	
洋品加标量 (μg)	0.25	8	0.2	5	0,2	5	
控制范围	70-12	30	70~1	30	70-1	30	

结论。 替代始於加斯回改率均在控制范围以内,替代初於加斯回收制定合格。 备注。1、加斯回收率(%)。(加斯群岛测定液度、原样品测定液度)。完容体积/加斯量*100 2、替代物原样品测定液度均以等参与计算。

第 40 页, 共 45 页

4.1.10 土壤样品曲线中间点校准质量控制结果

广州中德环境技术研究院有限公司

ZD-JL-YS-100-34

项目编号	ZD2024-E04		制数据汇总表	T	曲色计	何占地准	
與日朔节	ZD2024-E04	1	與電突剂	elfe			相对误差
分析指标	分析方法	单位	质控批次	現曲线中间点	原曲线 中间点	相对误差	控制范围
氰化物	НЈ 745-2015	Abs	TR24-E042-1-13	0.275	0.270	1.9	≤5
無化物	GB/T 22104-2008	μg	TR24-E042-I13	99.3	100.0	0.7	≤10
(17)	HJ 491-2019	mg/L	TR24-E042-113	0.7905	0.8000	1.2	≤10
쇔	НЈ 491-2019	mg/L	TR24-E042-113	2.1209	2.0000	6.0	≤10
保	HJ 491-2019	mg/L	TR24-E042-113	0.7776	0.8000	2.8	≤10
\$\$	НЈ 491-2019	mg/L	TR24-E042-113	0.7732	0.8000	3.4	≤10
2-無酚	HJ 834-2017	mg/L	TR24-E042-1~13	4.7190	5.0	5.6	≤30
苯酚-d6	HJ 834-2017	mg/L	TR24-E042-113	4.9102	5.0	1.8	≤30
硝基苯-D5	НЈ 834-2017	mg/L	TR24-E042-113	5.6822	5.0	13.6	≤30
2-氰联苯	НЈ 834-2017	mg/L	TR24-E042-1~13	4.9723	5.0	0.6	≤30
2,4,6-三溴苯酚	HJ 834-2017	mg/L	TR24-E042-1~13	6.1857	5.0	23.7	≤30
4,4-三联苯-D14	HJ 834-2017	mg/L	TR24-E042-1~13	5.8283	5.0	16.6	≤30
萘	НЈ 834-2017	mg/L	TR24-E042-113	4.9295	5.0	1.4	≤30
苊烯	HJ 834-2017	rng/L	TR24-E042-113	5.2553	5.0	5.1	≤30
苊	HJ 834-2017	mg/L	TR24-B042-113	4.8990	5.0	2.0	≤30
芴	HJ 834-2017	mg/L	TR24-E042-113	5.0542	5.0	1.1	≤30
#	HJ 834-2017	mg/L	TR24-E042-113	4.8235	5.0	3.5	≤30
蔥	HJ 834-2017	mg/L	TR24-E042-I13	4.9780	5.0	0.4	≤30
荧 蒽	НЈ 834-2017	mg/L	TR24-E042-113	4.7619	5.0	4.8	≤30
芘	НЈ 834-2017	mg/L	TR24-E042-1~13	5.8954	5.0	17.9	≤30
恭非 (a) 惹	HJ 834-2017	mg/L	TR24-E042-113	4.9202	5.0	1.6	≤30
油	HJ 834-2017	mg/L	TR24-E042-113	5.6030	5.0	12.1	≤30
苯并 (b) 类蓝	НЈ 834-2017	rng/L	TR24-E042-113	3.9748	5.0	20.5	≤30
苯并 (k) 荧蒽	HJ 834-2017	mg/L	TR24-E042-1~13	4.3754	5.0	12.5	≤30
苯并 (a) 芘	HJ 834-2017	mg/L	TR24-E042-1~13	4.3089	5.0	13.8	≤30
茚并 (1,2,3-ed) 芘	HJ 834-2017	rng/L	TR24-E042-113	3.5854	5.0	28.3	≤30
二苯并 (a,h) 蔥	HJ 834-2017	mg/L	TR24-E042-1~13	3.5446	5.0	29.1	≤30
苯并 (g,h,i) 莊	НЈ 834-2017	mg/L	TR24-E042-1~13	3.7113	5.0	25.8	≤30
异佛尔酮	HJ 834-2017	mg/L	TR24-E042-113	5.2677	5.0	5.4	≤30
二溴氟甲烷(替代	HJ 605-2011	µg/L	TR24-E042-115	48.9912	50.0	2.0	≤20
甲苯-D8(替代物)	НЈ 605-2011	µg/L	TR24-E042-115	48.7792	50.0	2.4	≤20
4-溴氟苯(替代物)	HJ 605-2011	μg/L	TR24-E042-1~15	50.0565	50.0	0.1	≤20
氣甲烷	HJ 605-2011	µg/L	TR24-E042-1~15	58.4575	50.0	16.9	≤20
無乙烯	HJ 605-2011	μg/L	TR24-E042-1~15	51.0701	50.0	2.1	≤20
1,1-二氯乙烯	HJ 605-2011	µg/L	TR24-E042-115	49.0923	50.0	1.8	≤20
二氯甲烷	НЈ 605-2011	µg/L	TR24-E042-1~15	47.9017	50.0	4.2	≤20

第11页,共16页

生效日期: 2024.03.01

第 41 页, 共 45 页

广州中德环境技术研究院有限公司

ZD-JL-YS-100-34

项目编号	ZD2024-E0	42	质控类别		曲线中	间点校准	
197	COLUMN STATE OF THE STATE OF TH	G940-A	200000000000	曲	线中间点	校准	相对误差
分析指标	分析方法	单位	质控批次	现曲线 中间点	原曲线 中间点	相对误差 %	控制范围
反式-1,2-二氮乙烯	HJ 605-2011	µg/L	TR24-E042-115	49.0172	50.0	2.0	≤20
1,1-二氯乙烷	HJ 605-2011	μg/L	TR24-E042-115	49.0274	50.0	1.9	≤20
類式-1,2-二氟乙烯	HJ 605-2011	μg/I,	TR24-E042-115	48.7186	50.0	2.6	≤20
無仿	HJ 605-2011	μg/L	TR24-E042-1-15	49.6698	50.0	0.7	≤20
1,1,1,三氟乙烷	HJ 605-2011	µg/L	TR24-E042-1~15	48.4076	50.0	3.2	≤20
四紙化碳	HJ 605-2011	μg/L	TR24-E042-I15	46.5772	50.0	6.8	≤20
1,2-二氯乙烷	HJ 605-2011	µg/L	TR24-E042-I15	48.3740	50.0	3.3	≤20
三氟乙烯	HJ 605-2011	µg/L	TR24-E042-115	49.2070	50.0	1.6	≤20
1,2-二氯丙烷	HJ 605-2011	μg/L	TR24-E042-115	48,6106	50.0	2.8	≤20
1,1,2-三氯乙烷	HJ 605-2011	µg/L	TR24-E042-115	48.2095	50.0	3.6	≤20
四氯乙烯	НЈ 605-2011	µg/L	TR24-E042-1~15	47.9640	50.0	4.1	≤20
1,1,1,2-四氟乙烷	HJ 605-2011	μg/L	TR24-E042-1~15	48.5423	50.0	2.9	≤20
1,1,2,2-四氧乙烷	НЈ 605-2011	µg/L	TR24-E042-1~15	50.9156	50.0	1.8	≤20
1,2,3-三氯丙烷	HJ 605-2011	pg/L	TR24-E042-1~15	50,2356	50.0	0.5	≤20
丙酮	HJ 605-2011	μg/L	TR24-E042-115	48.9338	50.0	2.1	≤20
石油烃 (C ₁₀ -C ₄₀)	HJ 1021-2019	mg/L	TR24-E042-113	740.81	775	4.4	≤10

第12页, 共16页

生效日期: 2024.03.01

第 42 页, 共 45 页

4.2 地下水样品质量控制数据统计表

4.2.1 地下水标准样品分析质量控制结果

			质量	控制数据	居汇总表			
项目编号	1	ZD202	4-E042		质控类别	3	(验室质控	样
Al-mile-		96 197 195		实	验室控制样	品		
分析指标	分析方法		单位		质控批次编号	測定值	标准(直范围
				- W4 - 2		初走惧	低	高
氟化物	GB/T 7484-1987	0.05	mg/L	Z8856	DXS24-E042-1~7	1.48	1.30	1,52
	を质控样測定结果: 度、測定值、标准		200000000000000000000000000000000000000		100 TO 10			

4.2.2 地下水样品全程序空白分析质控制结果

质量控制数据汇总表

项目编号	ZD202	4-E042		质控类别	全程	序空白
分析指标	分析方法	检出限	单位	质控采样日期	空白样品浓度	空白值控制范围
锌	HJ 700-2014	0.67	μg/L	2024.11.04	ND	< 0.67
丙酮	HJ 895-2017	0.02	mg/L	2024.11.04	ND	< 0.02
可萃取性石油烃 (C _{to} -C _{to})	НЈ 894-2017	0.01	mg/L	2024.11.04	ND	< 0.01
氰化物	НЈ 823-2018	0.001	mg/L	2024.11.04	ND	<0.001
氮化物	GB/T 7484-1987	0.05	mg/L	2024.11.04	ND	<0.05
i论: 所有分析指标均小于:	方法检出限,全程序空白	合格。				

4.2.3 地下水样品实验室空白分析质量结果

项目编号	ZD2024	4-E042		质控类别	实验室空白样		
分析指标	分析方法	检出限	单位	质控批次编号	空白样品浓度	控制范围	
锌	НЈ 700-2014	0.67	μg/L	DXS24-E042-17	ND	<0.67	
铧	НЈ 700-2014	0.67	μg/L	DXS24-E042-17	ND	< 0.67	
丙酮	HJ 895-2017	0.02	mg/L	DXS24-E042-1~7	ND	< 0.02	
可萃取性石油烃 (C ₁₀ -C ₄₀)	HJ 894-2017	0.01	mg/L	DX824-E042-1~7	ND	<0.01	
氰化物	HJ 823-2018	0.001	mg/L	DXS24-E042-1~7	ND	< 0.001	
氰化物	HJ 823-2018	0.001	mg/L	DX824-E042-1~7	ND	< 0.001	
氟化物	GB/T 7484-1987	0.05	mg/L	DX824-E042-1~7	ND	<0.05	
無化物	GB/T 7484-1987	0.05	mg/L	DXS24-E042-1~7	ND	<0.05	

结论: 所有分析指标均小于方法检出限, 实验室空白测定合格。 备注: 1、ND表示小于方法检出限; 2、检出限、空白挥品浓度、空白值控制范围的单位均为感列单位列的单位。

第 43 页, 共 45 页

4.2.4 地下水样品现场平行分析质量控制结果

质量控制数据汇总表

项目编号	ZD2024	-E042		质控类别	现场平行样				
								相对偏差	
分析指标	分析方法	检出限	単位	平行样品编号	样品浓 度	平行样品 浓度	相对傳	控制范围	
锌	HJ 700-2014	0.67	μg/L	DXS24-E042-4、5	10.0	8.90	5.8	≤20	
四酮	HJ 895-2017	0.02	mg/L	DXS24-E042-4、5	ND	ND	2	≤20	
可萃取性石油烃 (C ₁₀ -C ₄₀)	HJ 894-2017	0.01	mg/L	DXS24-E042-4、5	0.05	0.05	0.0	≤25	
氰化物	HJ 823-2018	0.001	mg/L	DXS24-E042-4、5	ND	ND		≤10	
氰化物	GB/T 7484-1987	0.05	mg/L	DXS24-E042-4、5	0.19	0.23	9.5	≤10	

结论:现场平行湖定结果均在平行控制范围以内,现场平行湖定台格。

4.2.5 地下水样品实验室平行分析质量控制结果

质量控制数据汇总表

项目编号	ZD2024	-E042		质控类别		实验室平行样		
分析指标	分折方法	检出限	单位	平行样品编号		行样品款 平行样品 旅度	-	相对偏差 控制范围 %
锌	HJ 700-2014	0.67	µg/L	DXS24-E042-1	148	143	1.7	≤20
丙酮	HJ 895-2017	0.02	mg/L	DXS24-E042-1	ND	ND	•	≤20
氰化物	HJ 823-2018	0.001	mg/L	DXS24-E042-1	ND	ND		≤10
氮化物	GB/T 7484-1987	0.05	mg/L	DXS24-E042-1	0.17	0.17	0.0	≤10

结论。实验室平行器定结果均在平行控制范围以内,实验室平行制定合格。

备注: 1、样品浓度、平行得品浓度、检出限的单位均为坚列单位列的单位; 2、ND表示小于方法检出限。

4.2.6 地下水样品加标回收分析质量控制结果

质量控制数据汇总表

项目编号	ZD202	4-E042		质控类别		加标样				
							实验室	加标样品包	制	
分析指标	分析方法	检出限	单位	加标样品编号	样品浓 度	加标量 (µg)	加标样品浓度	加标样品 回收率 (%)	低	高
4 9	НЈ 700-2014	0.67	μg/L	DXS24-E042-4	10	1.0	28.2	90.8	70	130
49	НЈ 700-2014	0.67	µg/L	DXS24-E042-4	10	1.0	28.4	92.1	70	130
69	НЈ 700-2014	0.67	μg/L	KB	ND	1.5	28.5	94.9	80	120
内阁	НЈ 895-2017	0.02	mg/L	DXS24-E042-1	ND	0.3	0.28	91.8	70	120
可萃取性石油烃 (C ₁₆ -C ₄₅)	НЈ 894-2017	0.01	mg/L	КВІ	ND	310	0.29	94.8	70	120
氰化物	НЈ 823-2018	0.001	mg/L	DXS24-E042-5	ND	5	0.010	104.1	80	120

第 44 页, 共 45 页

各注: 1、样品浓度、平行样品浓度、核出限的单位均为整列单位列的单位; 2、ND表示小于方法检出限。

备注: 1、加採回收率 (%)=(加标样品浓度-样品浓度) *取样量/加标量*100; 2、检出限、样品浓度、加标样品浓度单位均为整列单位的单位。

4.2.7 地下水样品曲线中间点校准质量控制结果

质量控制数据汇总表

项目编号	ZD2024-E04	2	质控类别	曲线中间点校准				
NAME OF THE OWNER.	WWW.SHOWN		曲线中间点校准		技准	相对误差		
分析指标	分析方法	单位	质控批次	现曲线 中间点	原曲线 中间点	相对确差 %	控制范围	
锌	НЈ 700-2014	μg/L	DXS24-E042-1-7	21,867	20.000	9.3	≤10	
丙酮	HJ 895-2017	mg/L	DXS24-E042-1-7	0.3003	0.3000	0.1	≤20	
可萃取性石油烃 (C ₁₀ -C ₄₀)	HJ 894-2017	mg/L	DXS24-E042-17	335.17	310.00	8.1	≤10	
氧化物	HJ 823-2018	mg/L	DXS24-E042-1~7	20.132	20.000	0.7	≤10	
氟化物	GB/T 7484-1987	mg/L	DXS24-E042-1~7	2.02	2.00	1.0	≤10	
2000 1000		mg/L 曲线校准台		2.02	2.00	1.0	5	

^{***}报告结束***

第 45 页, 共 45 页

广州中德环境技术研究院有限公司

质 控 报 告

编制: 李秋霞 李秋霞

审核: 彭梓超 彭梓起

签 发: 赵秋香 (* ****

广州中德环境技术研究院有限公司 (检验检测专用章) 第1页 共15页

报告声明

- 1 本公司保证检测的公正、准确、科学和规范,对检测的数据负责,并对委托单位所提供的样品和技术资料保密。
- 2本公司的采样和检测按国家相关标准、技术规范和本公司的程序文件规定严格执行。
- 3 本报告涂改无效,无编写、审核、签发人签字无效。
- 4 未经本公司书面批准,不得部分复制本报告。
- 5 检测委托方如对本质控报告有疑问,须于收到本质控报告之日起十日内向本机构提出或查询,来函或来电请注明报告编号。
- 6 本报告不具有对社会的证明作用。

本机构通讯资料:

联系地址:广州市黄埔区果园二路1号摩登大厦401房

邮政编码: 510765

邮 箱: 928246749@qq.com 受理电话: 020-32038973 网 址: www.gzzdep.com

第 2 页, 共 15 页

目 录

-、项目概况	. 4
、 质量控制过程	. 4
2.1 采样和检测人员资质情况	.4
2.2 仪器设备一览表	.4
2.3 检测方法、主要分析仪器及检出限	.4
2.4 样品的采集、保存、流转、制备和预处理	.6
2.4.1 样品的采集和保存	.6
2.4.2 样品的流转	.7
2.4.3 样品的分析前处理/预处理	.9
2.5 样品时效性统计	0
2.5.1 地下水样品时效性统计	0
、质量控制结果汇总	11
3.1 地下水样品质控结果汇总	11
、实验室质量控制数据统计表	3
4.1 地下水样品质量控制数据统计表	3
4.1.1 地下水标准样品分析质量控制结果	3
4.1.2 地下水样品全程序空白分析质控制结果	3
4.1.3 地下水样品实验室空白分析质量结果	4
4.1.4 地下水样品现场平行分析质量控制结果	4
4.1.5 地下水样品实验室平行分析质量控制结果	5
4.1.6 地下水样品加标回收分析质量控制结果	5
4.1.7 地下水样品曲线中间占校准质量控制结果	5

第 3 页, 共 15 页

一、项目概况

受广州添利电子科技有限公司委托,对广州添利电子科技有限公司土壤和地下水自行监测 项目(下简称"项目地块")的地下水进行现场检测及采样检测。我司于2024年12月30日对项 目地块的地下水进行现场采样, 共采集了5个地下水样品(不含现场平行样), 并于2024年 12月31日~2025年01月02日完成了地下水样品的实验室分析检测。我司最终出具了该项目 地块的地下水的检测报告以及质控报告【检测报告编号为 ZD2024-E047, 质控报告编号为 ZD2024-E047ZK] .

二、质量控制过程

2.1 采样和检测人员资质情况

参与本项目的采样和检测人员,均经过专业知识培训及考核,考核合格并持证上岗。参 与本项目的采样和检测人员资质情况,详见下表 1。

	衣上木件和位测八贝信	心一见衣
人员类别	人员姓名	上岗证编号
V+Y-1 E	甘宗旭	JCPX(JC)20230101
采样人员	方超群	JCPX(JC)20210096
4A 2004 1 III	皮婷婷	ZD-FM-005
检测人员	傅双鹰	JCPX(JC)20210118

2.2 仪器设备一览表

本项目所使用到的所有关键仪器设备均进行了检定/校准,且仪器设备的检定/校准周期均 在有效期内,详见下表 2。

表 2 投入使用的仪器设备信息一览表

仪器设备型号、名称	仪器设备编号	检定/校准日期	检定/校准有效期	仪器设备状态
UV-6000PC 紫外可见分光光度计	ZDSB0315	2024.10.15	2025.10.14	合格
iCAP RQ 电感耦合等离子质谱仪	ZDSB0226	2024.04.17	2025.04.16	合格

第 4 页, 共 15 页

报告编号: ZD2024-E047ZK

2.3 检测方法、主要分析仪器及检出限

本项目所涉及的分析检测指标、检测方法、方法检出限、所使用的仪器设备名称、型号 及编号详见下表 3。

表 3 检测方法、主要分析仪器及检出限一览表

序号	类别	检测项目	检测方法	仪器设备名称及编号	检出限
1	地下水	铜	《水质 65 种元素的测定 电感耦	iCAP RQ 电感耦合等离子质谱仪	0.08µg/L
2	地下水	镍	合等离子体质谱法》 HJ 700-2014	电恐柄音等离子质谱仪 ZDSB0226	0.06µg/L
3	地下水	展展	《水质 氨氮的测定 纳氏试剂分 光光度法》 HJ 535-2009	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.025mg/L
4	地下水	总氮	《水质 总氮的测定 碱性过硫酸 钾消解繁外分光光度法》HJ 636-2012	UV-6000PC 紫外可见分光光度计 ZDSB0315	0.05mg/L

第 5 页, 共 15 页

2.4 样品的采集、保存、流转、制备和预处理

2.4.1 样品的采集和保存

2.4.1.1 地下水样品的采集和保存

地下水样品的采集、保存、运输和质量保证等按照《地下水环境监测技术规范》 (HJ164-2020) 及各项目分析方法标准的相关要求进行。

在采集地下水样品前使用各井专属的贝勒管进行洗井(采样洗井),洗出约 3~5 倍井体积的水量后,使用便携式水质测定仪对出水进行测定,浊度小于或等于 10NTU 时或者当浊度连续三次测定的变化在 10%以内、电导率连续三次测定的变化在 10%以内、pH 连续三次测定的变化在±0.1pH 以内;或洗井抽出水量在井内水体积的 3 倍以上时,可结束洗井。

在采样前洗井结束后 2h 内待井内的水位恢复稳定后,使用带低流量控制阀的贝勒管,按照规定的流量采集相应层次的地下水样品至对应的容器中,依据《地下水环境监测技术规范》(HJ 164-2020)以及相关检测标准的要求,对样品采取相应的保存措施(注明除外),详见下表:

检测项目 采样容器 保存时间和保存条件 标准依据 14d, 硝酸酸化 pH≤2, 避光密封 铜、镍 250mL 聚乙烯瓶 HJ 700-2014 7d,硫酸酸化,pH≤2, 2~5℃冷 氨氮 250mL 聚乙烯瓶 HJ 535-2009 藏保存 总氮 250mL 聚乙烯瓶 7d, 浓硫酸酸化, pH=1~2 HJ 636-2012

表 4 地下水样品采集和保存条件

地下水样品采集后,在样品瓶上记录样品编号,填写样品流转单,及时将样品放到装有 冰冻蓝冰的低温保温箱中,并送回实验室待检。

第 6 页, 共 15 页

2.4.1.1.1 地下水样品采集过程质量控制

- (1) 地下水样品按照挥发性有机物(VOCs)——稳定有机物——重金属和普通无机物的顺序采集。
 - (2) 对于未添加保护剂的样品瓶,地下水采样前需用待采集水样润洗 2~3 次;
- (3)使用贝勒管采集挥发性有机物样品时,应缓慢沉降或提升贝勒管。取出后通过调节 贝勒管下端低流量控制阀,使水样沿瓶壁缓缓流入瓶中,直至在瓶口形成一向上弯月面,旋 紧瓶盖,倒置瓶身检查底部是否有存在顶空或气泡,如有立即重采;
- (4) 采集重金属及无机物的地下水样品时,现场使用真空抽滤装置将样品过 0.45 μm 滤膜后再加酸保存。抽滤前控制贝勒管流速,用待采集水样润洗抽滤装置 2~3 次,弃去 50mL 初始滤液再开始采集。
- (5) 针对本地块全部检测项目,采集不少于地块样品总数 10%的地下水现场平行样品, 并至少采集 1 份。
- (6) 针对本地块全部检测项目,每批次地下水样品采集1套全程序空白样品。在实验室预先使用相应容器装入试剂水,将其带到现场。与采样的样品瓶同时开盖和密封,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品采集到分析全过程是否受到污染。
- (7) 针对挥发性有机物项目,每批次地下水样品采集1套运输空白样品。在实验室预先使用1个带PTFE 衬垫密封瓶盖的40ml 棕色玻璃瓶装满试剂水,将其带到现场,采样时使其瓶盖一直处于密封状态,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品运输过程中是否受到污染。

2.4.2 样品的流转

地下水样品流转依据为《地下水环境监测技术规范》(HJ 164-2020)及各检测项目检测标准的相关要求进行。

在采样现场样品必须逐件与样品登记表、样品标签和采样记录进行核对,核对无误后分类装箱:

- (1) 将样品保存在有冰冻蓝冰的保温箱,避光保存,现场记录保存温度,保存温度应低于4°C,填写温控记录;
- (2)运输前逐件核对现场样品与登记表、标签、采用记录,核实样品标签完整、无破损,与现场记录无出入后分类装箱运输。

第7页,共15页

报告编号: ZD2024-E047ZK

- (3)运输过程中,专人看管运输过程中无样品损失、混淆和沾污,样品于当天到达实验室,到达实验室之后,当场清点样品数量,检验样品包装及标签有无破损,样品数量是否齐全;
- (4) 经送样、接样双方确认后,填写样品流转单,然后实验室分析测试技术人员根据不同检测因子要求进行保存,均在样品保存有效期内完成样品分析。

第 8 页, 共 15 页

2.4.3 样品的分析前处理/预处理

表 5 地下水样品的分析前处理/预处理步骤

序号	项目	标准依据	样品前处理 (预处理) 步骤
1	铜、镍	НЈ 700-2014	量取50mL 摇匀后的样品于250mL 聚四氟乙烯烧杯种,加入2mL 硝酸溶液和1mL 盐酸溶液于烧杯中,置于电热板上加热消解。盖上表面皿持续加热,直至样品蒸发至20mL 左右。待样品冷却后,用去离子水冲洗烧杯三次,并将冲洗液倒入50mL 比色管中,定容。
2	氨氮	HJ 535-2009	取适量水样,加入 1.0ml 酒石酸钾钠溶液,摇匀,再加入纳氏试剂 1.0ml,摇匀。在 420nm 波长下,用 20mm 比色皿以水做参比,测量吸光度,通过校准曲线计算得出氨氮浓度。
3	总氮	HJ 636-2012	量取 10ml 试样于 25ml 比色管中,加入 5ml 碱性过硫酸钾溶液,塞紧管塞,用纱布棉绳扎紧,置于高压蒸汽灭菌器中,加热至 120℃开始计时,保持 30min,取出冷却后混匀,加入 1ml 盐酸溶液,用纯水定容。使用 1cm 石英比色皿,以纯水作参比,于波长 220mm 和 275nm 处测定。

第 9 页, 共 15 页

機関項目 絵刻方法 舞曲 深樺目期 深樺目面 時間 時間 接換金 前間 時間 接換方式 (接存时間和条件 類 HJ 700-2014 5 2024.12.30 10:10-16:10 2024.12.30 2025.01.02 (株置運光保存 144. 耐酸酸化、pH<2 HJ 700-2014 製菓 HJ 700-2014 5 2024.12.30 10:10-16:10 2024.12.30 2025.01.02 (株置運光保存 144. 耐酸酸化、pH<2 HJ 700-2014 製菓 HJ 700-2014 5 2024.12.30 10:10-16:10 2024.12.30 (株置運光保存 144. 耐酸酸化、pH<2 HJ 700-2014 塩類 HJ 535-2009 5 2024.12.30 10:10-16:10 2024.12.30 (株置運光保存 144. 耐酸酸化、pH<2 HJ 535-2009 地域 形成 形成 形成 形成 形成 化 PH 20. 2-5 Cが関係 HJ 535-2009 地域 形成						表6地下,	表 6 地下水样品时效性情况表	性情况表			
HJ 700-2014 5 2024.12.30 10:10-16:10 2024.12.30 2025.01.02 元		松州原教	本	2 株口報	原古奉母	样品接收	样品前处理	样品分析	实验室	标准要求	
5 2024.12.30 10:10-16:10 2024.12.30 2025.01.02 和限股化。有限股化。有限股化。中4-2 5 2024.12.30 10:10-16:10 2024.12.30 2025.01.02 2025.01.02 4025.01.02 4025.01.02 5 2024.12.30 10:10-16:10 2024.12.30 / 2024.12.31 4024.12.32 4024.12.33 4024.1		はないな	数曲	K I K	不行四回	巨	恒	計画	保存方式	保存时间和条件	标准依据
HJ 700-2014 5 2024-12.30 10:10-16:10 17:05 2025.01.02 2025.01.02 (新疆地)保存 14d. 耐酸酸化,pH<2 1935-2009 5 2024-12.30 10:10-16:10 2024-12.30 / 2024-12.31 離酸化、		HJ 700-2014	2	2024.12.30	10:10-16:10	2024.12.30 17:05	2025.01.02	2025.01.02	硝酸酸化, 低温避光保存	14d, 硝酸酸化, pH<2	HJ 700-2014
HJ 535-2009 5 2024.12.30 HJ 536-2012 S 2024.12.31 配数化, 低 7d, 硫酸酸化, PH < 2, 2-5°C冷藏保存		HJ 700-2014	5	2024.12.30	10:10-16:10	2024.12.30	2025.01.02	2025.01.02	硝酸酸化, 低温避光保存	14d, 硝酸酸化, pH<2	HJ 700-2014
5 2024,12.30 10:10-16:10 2024,12.31 硫酸酸化, 低 7d, 用浓硫酸酸化至 pH=1-2	氣氣	HJ 535-2009	5	2024.12.30	10:10-16:10	2024.12.30 17:05	,	2024.12.31	硫酸酸化,低 温避光保存	7d, 硫酸酸化, PH < 2, 2~5°C/冷藏保存	HJ 535-2009
		HJ 636-2012	2	2024.12.30	10:10-16:10	2024.12.30	1	2024,12.31	硫酸酸化,低温避光保存		HJ 636-2012

三、质量控制结果汇总

3.1 地下水样品质控结果汇总

表7 地下水样品质控结果汇总

第11页, 共15页

报告编号: ZD2024-E047ZK

针对统计的质控结果,对实验室质量控制情况总结如下:

- (1) 空白试验:根据《地下水环境监测技术规范》(HJ 164-2020)及检测分析方法等要求,空白样品分析测试结果均低于方法检出限,空白样品合格率为 100%。
- (2) 精密度控制:根据《地下水环境监测技术规范》(HJ 164-2020)及检测分析方法 对精密度室内相对偏差的要求,实验室平行、现场平行所测项目的相对偏差均在要求范围内, 精密度合格率为 100%。
- (3)准确度控制:根据《地下水环境监测技术规范》(HJ 164-2020)及检测分析方法 对准确度加标回收率的要求,样品加标回收分析、替代物加标回收分析、空白加标回收分析 所测项目的加标回收率均在要求范围内,而且实验室的有证标准样品对应所测项目结果均在 标准值的控制范围内,准确度合格率为100%。
- (4)标准曲线校准及仪器稳定性检查:根据《地下水环境监测技术规范》(HJ 164-2020)及检测分析方法的要求,标准曲线中间点校准均在标准要求的相对误差范围以内,标准曲线校准合格率为100%,仪器稳定性检查合格率为100%。

综上所述,本项目的空白试验、精密度控制、准确度控制、标准曲线校准、仪器稳定性 检查合格率均为100%,符合《地下水环境监测技术规范》(HJ164-2020)及检测分析方法 的相关要求。

第 12 页, 共 15 页

四、实验室质量控制数据统计表

4.1 地下水样品质量控制数据统计表

4.1.1 地下水标准样品分析质量控制结果

	4		炴	量控制数据》	L			
项目编号		ZD2	024-E04	7	质控类别	实	验室质控	样
						实引	金室控制科	¥品
分析指标	分析方法	检出限	单位	质控样 编号	质控批次编号	測定值	标准值	直范围
		LT SAUGINANI		44.7		勿走祖	低	高
氨氮	HJ535-2009	0.025	mg/L	2005136	DXS24-E047-1~7	9.32	8.77	9.49
总氮	HJ 636-2012	0.05	mg/L	ZCRM0013 Z4736	DXS24-E047-17	4.82	4.21	4.95
吉论: 实验	室质控样测定组	果均在核	示准值范	圈以内,质控样测定	合格。			
				围以内, 质控样测定 均为竖列单位的单位				

4.1.2 地下水样品全程序空白分析质控制结果

质量控制数据汇总表

项目编号	ZD20	24-E047		质控类别	全程序空白		
分析指标	分析方法	检出限	单位	质控采样日期	空白样晶浓度	空白值控制范围	
镍	HJ 700-2014	0.06	μg/L	2024.12.30	ND	< 0.06	
铜	НЈ 700-2014	0.08	μg/L	2024.12.30	ND	<0.08	
東東	HJ 535-2009	0.025	mg/L	2024.12.30	ND	< 0.025	
总氨	НЈ 636-2012	0.05	mg/L	2024,12.30	ND	<0.05	

第 13 页, 共 15 页

4.1.3 地下水样品实验室空白分析质量结果

质量控制数据汇总表

项目编号	ZD202	4-E047		质控类别	实验室空白样		
分析指标	分析方法	检出限	单位	质控批次编号	空白样品浓度	控制范围	
镍	HJ 700-2014	0.06	μg/L	DXS24-E047-17	ND	<0.06	
铜	HJ 700-2014	0.08	μg/L	DXS24-E047-1~7	ND	<0.08	
樂	HJ 700-2014	0.06	μg/L	DXS24-E047-17	ND	<0.06	
铜	НЈ 700-2014	0.08	μg/L	DXS24-E047-1~7	ND	<0.08	
氮氮	HJ 535-2009	0.025	Abs	DXS24-E047-17	0.022	< 0.025	
気飢	НЈ 535-2009	0.025	Abs	DXS24-E047-1~7	0.022	< 0.025	
总氮	HJ 636-2012	0.05	mg/L	DXS24-E047-1~7	0.017	< 0.05	
总氮	HJ 636-2012	0.05	mg/L	DXS24-E047-1~7	0.017	< 0.05	

结论:所有分析指标均小于方法检出限,实验室空白测定合格。

各注:
1、ND表示小于方法检出限:
2、检出限、空白样晶浓度、空白值控制范围的单位均为整列单位列的单位。

4.1.4 地下水样品现场平行分析质量控制结果

质量控制数据汇总表

项目编号 ZD2024-E047			质控类别	现场平行样				
分析指标			单位	LIVADA AURI ENGLACIO	3	相对偏差		
	分析方法	检出限		平行样品编号	样品 浓度	平行样品 浓度	相对偏 差%	控制范围
镍	НЈ 700-2014	0.06	μg/L	DXS24-E047-4、5	2.61	2.52	1.7	≤20
铜	НЈ 700-2014	0.08	μg/L	DXS24-E047-4、5	7.38	8.01	4.1	≤20
复氮	НЈ 535-2009	0.025	mg/L	DXS24-E047-4、5	0.203	0.211	1.9	≤10
总氮	НЈ 636-2012	0.05	mg/L	DXS24-E047-4、5	1.05	0.99	2.9	≤10

各注: 1、样晶浓度、平行样晶浓度、检出限的单位均为驱列单位列的单位; 2、ND表示小于方法检出限。

第 14 页, 共 15 页

4.1.5 地下水样品实验室平行分析质量控制结果

质量控制数据汇总表

项目编号	ZD202	4-E047	质控类别	实验室平行样				
分析指标	分析方法	检出限	单位	平行样品编号	平 样晶液 度	行样品浓 平行样品 浓度		相对偏差 控制范围 %
镍	НЈ 700-2014	0,06	µg/L	DXS24-E047-1	1.59	1.44	4.9	≤20
铜	НЈ 700-2014	0.08	μg/L	DXS24-E047-1	3.90	4.57	7.9	≤20
氦氦	НЈ 535-2009	0.025	mg/L	DXS24-E047-1	0.167	0.175	2.3	≤10
总氮	HJ 636-2012	0.05	mg/L	WS24-E047-1	1.3	1.3	1.2	≤10

4.1.6 地下水样品加标回收分析质量控制结果

质量控制数据汇当事

项目编号	目编号 ZD2024-E047			质控类别	加标样						
						实验室加标样品控制					
分析指标	分析方法	检出限	单位	加标样品编号	样品浓 度	加标量 (μg)	加标样品浓度	加标样品 回收率 (%)	低	高	
缐	HJ 700-2014	0.06	μg/L	DXS24-E047-7	ND	0.5	10.4	104.3	70	130	
铜	HJ 700-2014	0.08	μg/L	DXS24-E047-7	ND	0.5	11.3	112.9	70	130	
傑	НЈ 700-2014	0.06	µg/L	DXS24-E047-7	ND	0.5	11.6	115.9	70	130	
铜	НЈ 700-2014	0.08	µg/L	DXS24-E047-7	ND	0.5	10.0	100.4	70	130	
樂	HJ 700-2014	0.06	µg/L	KB	ND	0.5	11.0	109.8	80	120	
铜	НЈ 700-2014	0.08	μg/L	KB	ND	0.5	9.45	94.5	80	120	

4.1.7 地下水样品曲线中间点校准质量控制结果

项目编号	ZD2024-E04	47	质控类别	曲线中间点校准					
	The second secon			曲	相对误差				
分析指标	分析方法	单位	质控批次	現曲线 中间点	原曲线 中间点	相对偏差 %	控制范围		
镍	НЈ 700-2014	0.06	DXS24-E047-17	28.563	30.0	2.5	≤10		
钢	HJ 700-2014	0.08	DXS24-B047-1~7	28,502	30.0	2.6	≤10		
成度	НЈ 535-2009	Abs	DXS24-E047-1~7	0.303	0.299	1.3	≤10		
总氮	НЈ 636-2012	Abs	DXS24-E047-1~7	0.100	0.099	1.0	≤10		

报告结束

第 15 页, 共 15 页

各注: 1、样品浓度、平行样品浓度、检出限的单位均为竖列单位列的单位; 2、ND表示小干方法检出限。

結论:加标样品回收率均在控制范围以内,加标回收测定合格。 备注。 1、加标回收率(%)-(加标样品浓度/样品浓度)"取特量/加标量=100; 2、捡出限、样品浓度、加标样品浓度单位均为整列单位的单位。